POSIX MESSAGE QUEUES

This chapter describes POSIX message queues, which allow processes to exchange
data in the form of messages. POSIX message queues are similar to their System V
counterparts, in that data is exchanged in units of whole messages. However, there
are also some notable differences:

e POSIX message queues are reference counted. A queue that is marked for
deletion is removed only after it is closed by all processes that are currently
using it.

e Each System V message has an integer type, and messages can be selected in a
variety of ways using msgrcu(). By contrast, POSIX messages have an associated pri-
ority, and messages are always strictly queued (and thus received) in priority order.

e POSIX message queues provide a feature that allows a process to be asynchro-
nously notified when a message is available on a queue.

POSIX message queues are a relatively recent addition to Linux. The required
implementation support was added in kernel 2.6.6 (in addition, glibc 2.3.4 or later
is required).

POSIX message queue support is an optional kernel component that is config-
ured via the CONFIG_POSIX MQUEUE option.

The Linux Programming Interface
© 2010 by Michael Kerrisk
http://lwww.nostarch.com/tlpi

52.1

52.2

1064

Overview

The main functions in the POSIX message queue API are the following:

The mq_open() function creates a new message queue or opens an existing
queue, returning a message queue descriptor for use in later calls.

The mq_send() function writes a message to a queue.
The mq_receive() function reads a message from a queue.

The mq_close() function closes a message queue that the process previously
opened.

The mq_unlink() function removes a message queue name and marks the
queue for deletion when all processes have closed it.

The above functions all serve fairly obvious purposes. In addition, a couple of fea-
tures are peculiar to the POSIX message queue API:

Each message queue has an associated set of attributes. Some of these
attributes can be set when the queue is created or opened using mq_open(). Two
functions are provided to retrieve and change queue attributes: mq_getattr() and
mq_setattr().

The mq_notify() function allows a process to register for message notification

from a queue. After registering, the process is notified of the availability of a mes-
sage by delivery of a signal or by the invocation of a function in a separate thread.

Opening, Closing, and Unlinking a Message Queue

In this section, we look at the functions used to open, close, and remove message
queues.

Opening a message queue

The mq_open() function creates a new message queue or opens an existing queue.

#include <fcntl.h> /* Defines 0_* constants */
#include <sys/stat.h> /* Defines mode constants */
#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...
/* mode_t mode, struct mq_attr *atir */);

Returns a message queue descriptor on success, or (mgd_t) -1 on error

The name argument identifies the message queue, and is specified according to the
rules given in Section 51.1.

The oflag argument is a bit mask that controls various aspects of the operation of

mg_open(). The values that can be included in this mask are summarized in Table 52-1.

The Linux Programming Interface

Chapter 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

Table 52-1: Bit values for the mq_open() oflag argument

Flag Description
0_CREAT Create queue if it doesn’t already exist
0_EXCL With 0_CREAT, create queue exclusively

0_RDONLY Open for reading only
0_WRONLY Open for writing only
O_RDWR Open for reading and writing

0_NONBLOCK | Open in nonblocking mode

One of the purposes of the oflag argument is to determine whether we are opening
an existing queue or creating and opening a new queue. If oflag doesn’t include
0_CREAT, we are opening an existing queue. If oflag includes 0_CREAT, a new, empty
queue is created if one with the given name doesn’t already exist. If oflag specifies
both 0_CREAT and 0_EXCL, and a queue with the given name already exists, then
mq_open() fails.

The oflag argument also indicates the kind of access that the calling process will
make to the message queue, by specifying exactly one of the values 0_RDONLY,
0_WRONLY, or O_RDWR.

The remaining flag value, 0_NONBLOCK, causes the queue to be opened in non-
blocking mode. If a subsequent call to mq_receive() or mq_send() can’t be performed
without blocking, the call will fail immediately with the error EAGAIN.

If mq_open() is being used to open an existing message queue, the call requires
only two arguments. However, if 0_CREAT is specified in flags, two further arguments
are required: mode and attr. (If the queue specified by name already exists, these two
arguments are ignored.) These arguments are used as follows:

e The mode argument is a bit mask that specifies the permissions to be placed on
the new message queue. The bit values that may be specified are the same as
for files (Table 154, on page 295), and, as with open(), the value in mode is
masked against the process umask (Section 15.4.6). To read from a queue
(mq_receive()), read permission must be granted to the corresponding class of
user; to write to a queue (mg_send()), write permission is required.

e The attr argument is an mgq_atlr structure that specifies attributes for the new
message queue. If attr is NULL, the queue is created with implementation-defined
default attributes. We describe the mq_attr structure in Section 52.4.

Upon successful completion, mq_open() returns a message queue descriptor, a value of
type mgd_t, which is used in subsequent calls to refer to this open message queue.
The only stipulation that SUSv3 makes about this data type is that it may not be an
array; that is, it is guaranteed to be a type that can be used in an assignment state-
ment or passed by value as a function argument. (On Linux, mgd_t is an int, but, for
example, on Solaris it is defined as void *.)

An example of the use of mq_open() is provided in Listing 52-2.

Effect of fork(), exec(), and process termination on message queve descriptors
During a fork(), the child process receives copies of its parent’s message queue

descriptors, and these descriptors refer to the same open message queue descriptions.

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1065
http://lwww.nostarch.com/tlpi

(We explain message queue descriptions in Section 52.3.) The child doesn’t inherit
any of its parent’s message notification registrations.

When a process performs an exec() or terminates, all of its open message queue
descriptors are closed. As a consequence of closing its message queue descriptors,
all of the process’s message notification registrations on the corresponding queues
are deregistered.

Closing a message queve

The mq_close() function closes the message queue descriptor mgdes.

#include <mqueue.h>

int mq_close(mqd_t mgdes);

Returns 0 on success, or —1 on error

If the calling process has registered via mgdes for message notification from the
queue (Section 52.6), then the notification registration is automatically removed, and
another process can subsequently register for message notification from the queue.

A message queue descriptor is automatically closed when a process terminates
or calls exec(). As with file descriptors, we should explicitly close message queue
descriptors that are no longer required, in order to prevent the process from run-
ning out of message queue descriptors.

As with close() for files, closing a message queue doesn’t delete it. For that pur-
pose, we need mq_unlink(), which is the message queue analog of unlink().

Removing a message queuve

The mq_unlink() function removes the message queue identified by name, and
marks the queue to be destroyed once all processes cease using it (this may mean
immediately, if all processes that had the queue open have already closed it).

#include <mqueue.h>

int mq_unlink(const char *name);

Returns 0 on success, or —1 on error

Listing 52-1 demonstrates the use of mq_unlink().

Listing 52-1: Using mq_unlink() to unlink a POSIX message queue

pmsg/pmsg_unlink.c

#include <mqueue.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
The Linux Programming Interface
1066 Choprer 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

52.3

if (argc != 2 || strcmp(argv[1], "--help") == 0)

usageErr("%s mg-name\n", argv[o0]);

if (mg_unlink(argv[1]
errExit("mg_unlin

exit(EXIT SUCCESS);

) =
°);

= -1)

pmsg/pmsg_unlink.c

Relationship Between Descriptors and Message Queues

The relationship between a message queue descriptor and an open message queue
is analogous to the relationship between a file descriptor and an open file (Figure 5-2,
on page 95). A message queue descriptor is a per-process handle that refers to an
entry in the system-wide table of open message queue descriptions, and this entry in
turn refers to a message queue object. This relationship is illustrated in Figure 52-1.

On Linux, POSIX message queues are implemented as i-nodes in a virtual file
system, and message queue descriptors and open message queue descriptions
are implemented as file descriptors and open file descriptions, respectively.
However, these are implementation details that are not required by SUSv3 and
don’t hold true on some other UNIX implementations. Nevertheless, we
return to this point in Section 52.7, because Linux provides some nonstandard
features that are made possible by this implementation.

Process A

Message queue
descriptor table

Table of open message

queue descriptions

(system-wide)

/

(other ptr to MQ f ptr to
info) description a8’ MQ
x I R
y
z
Process B
Message queue
descriptor table
(other ptr to MQ
info) description
/
B B

Message queue table
(system-wide)

(per-queue info:
MQ attributes; UID
& GID; notification
settings; msg data)

/mq-p

/mq-q

/mq-1

Figure 52-1: Relationship between kernel data structures for POSIX message queues

The Linux Programming Interface

© 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

POSIX Message Queues

1067

52.4

1068

Figure 52-1 helps clarify a number of details of the use of message queue descrip-
tors (all of which are analogous to the use of file descriptors):

e An open message queue description has an associated set of flags. SUSv3 speci-
fies only one such flag, 0_NONBLOCK, which determines whether 1/O is nonblocking.

o Two processes can hold message queue descriptors (descriptor x in the diagram)
that refer to the same open message queue description. This can occur because
a process opens a message queue and then calls fork(). These descriptors share
the state of the 0_NONBLOCK flag.

e Two processes can hold open message queue descriptors that refer to different
message queue descriptions that refer to the same message queue (e.g.,
descriptor z in process A and descriptor y in process B both refer to /mg-r). This
occurs because the two processes each used mg_open() to open the same queue.

Message Queue Attributes

The mq_open(), mq_getattr(), and mq_setattr() functions all permit an argument that

is a pointer to an mq_atir structure. This structure is defined in <mqueue.h> as follows:
struct mq_attr {

long mq_flags; /* Message queue description flags: 0 or
0_NONBLOCK [mq_getattr(), mq_setattr()] */

long mq_maxmsg; /* Maximum number of messages on queue
[mg_open(), mq_getattr()] */

long mq_msgsize; /* Maximum message size (in bytes)
[mg_open(), mq_getattr()] */

long mq_curmsgs; /* Number of messages currently in queue
[mg_getattr()] */

b

Before we look at the mgq_attr structure in detail, it is worth noting the following

points:

e Only some of the fields are used by each of the three functions. The fields used
by each function are indicated in the comments accompanying the structure
definition above.

e The structure contains information about the open message queue description
(mq_flags) associated with a message queue descriptor and information about
the queue referred to by that descriptor (mq_maxmsg, mq_msgsize, mq_curmsgs).

e Some of the fields contain information that is fixed at the time the queue is created
with mq_open() (mg_maxmsg and mq_msgsize); the others return information
about the current state of the message queue description (mq_flags) or message
queue (mq_curmsgs).

Setting message queve attributes during queue creation

When we create a message queue with mq_open(), the following mq_attr fields deter-

mine the attributes of the queue:

e The mqg_maxmsg field defines the limit on the number of messages that can be
placed on the queue using mq_send(). This value must be greater than 0.

The Linux Programming Interface
Chapter 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

o The mq_msgsize field defines the upper limit on the size of each message that may
be placed on the queue. This value must be greater than 0.

Together, these two values allow the kernel to determine the maximum amount of
memory that this message queue may require.

The mqg_maxmsg and mq_msgsize attributes are fixed when a message queue is
created; they can’t subsequently be changed. In Section 52.8, we describe two /proc files
that place system-wide limits on the values that can be specified for the mq_maxmsg
and mq_msgsize attributes.

The program in Listing 52-2 provides a command-line interface to the
mgq_open() function and shows how the mq_attr structure is used with mq_open().

Two command-line options allow message queue attributes to be specified: -m
for mq_maxmsg and —s for mq_msgsize. If either of these options is supplied, a non-NULL
attrp argument is passed to mq_open(). Some default values are assigned to the fields
of the mq_attr structure to which attrp points, in case only one of the -m and -s
options is specified on the command line. If neither of these options is supplied,
attrp is specified as NULL when calling mq_open(), which causes the queue to be created
with the implementation-defined defaults for the queue attributes.

Listing 52-2: Creating a POSIX message queue

pmsg/pmsg_create.c

#include <mqueue.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

static void
usageError(const char *progName)

{

fprintf(stderr, "Usage: %s [-cx] [-m maxmsg] [-s msgsize] mq-name "
"[octal-perms]\n", progName);

fprintf(stderr, " -C Create queue (0 _CREAT)\n");
fprintf(stderr, " -m maxmsg Set maximum # of messages\n");
fprintf(stderr, " -s msgsize Set maximum message size\n");
fprintf(stderr, " -X Create exclusively (0_EXCL)\n");
exit(EXIT_FAILURE);

}

int

main(int argc, char *argv([])

{

int flags, opt;

mode_t perms;

mqd_t mqd;

struct mg_attr attr, *attrp;

attrp = NULL;
attr.mg_maxmsg = 10;
attr.mq_msgsize = 2048;
flags = O_RDWR;

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1069
http://lwww.nostarch.com/tlpi

Kat
Sticky Note
Marked set by Kat

/* Parse command-line options */

while ((opt = getopt(argc, argv, "cm:s:x")) != -1) {
switch (opt) {
case 'c':
flags |= O_CREAT;

break;

case 'm':
attr.mq_maxmsg = atoi(optarg);
attrp = 8&attr;
break;

case 's':
attr.mq_msgsize = atoi(optarg);
attrp = &attr;

break;
case 'x':
flags |= O_EXCL;
break;
default:
usageError(argv[0]);
}
}
if (optind >= argc)
usageError(argv[0]);

perms = (argc <= optind + 1) ? (S_IRUSR | S_IWUSR) :
getInt(argv[optind + 1], GN_BASE_8, "octal-perms");

mqd = mq_open(argv[optind], flags, perms, attrp);
if (mqd == (mqd_t) -1)

errExit("mq_open");

exit(EXIT_SUCCESS);

pmsg/pmsg_create.c

Retrieving message queve attributes

The mq_getatir() function returns an mgq_attr structure containing information
about the message queue description and the message queue associated with the
descriptor mqdes.

#include <mqueue.h>

int mq_getattr(mqd_t mgqdes, struct mq_attr *atir);

Returns 0 on success, or —1 on error

The Linux Programming Interface
1070 Choprer 52 © 2010 by Michael Kerrisk
http://lwww.nostarch.com/tlpi

In addition to the mg_maxmsg and mq_msgsize fields, which we have already
described, the following fields are returned in the structure pointed to by attr:

mq_flags
These are flags for the open message queue description associated with the
descriptor mgdes. Only one such flag is specified: 0_NONBLOCK. This flag is ini-
tialized from the oflag argument of mq_open(), and can be changed using
mq_setatlr().

mq_curmsgs
This is the number of messages that are currently in the queue. This infor-
mation may already have changed by the time mq_getattr() returns, if other
processes are reading messages from the queue or writing messages to it.

The program in Listing 52-3 employs mgq_getattr() to retrieve the attributes for the
message queue specified in its command-line argument, and then displays those
attributes on standard output.

Listing 52-3: Retrieving POSIX message queue attributes

pmsg/pmsg_getattr.c

#include <mqueue.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])

mqd_t mqd;
struct mq_attr attr;

if (argc != 2 || strcmp(argv[1], "--help") == 0)
usageErr("%s mg-name\n", argv[o0]);

mqd = mq_open(argv[1], O _RDONLY);
if (mqd == (mqd_t) -1)
errExit("mq_open");

if (mg_getattr(mgd, &attr) == -1)
errExit("mq_getattr");

printf("Maximum # of messages on queue: %ld\n", attr.mgq_maxmsg);
printf("Maximum message size: %ld\n", attr.mq_msgsize);
printf("# of messages currently on queue: %1ld\n", attr.mq_curmsgs);
exit(EXIT_SUCCESS);

pmsg/pmsg_getattr.c

In the following shell session, we use the program in Listing 52-2 to create a mes-
sage queue with implementation-defined default attributes (i.e., the final argument
to mq_open() is NULL), and then use the program in Listing 52-3 to display the queue
attributes so that we can see the default settings on Linux.

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queves 1071
http://lwww.nostarch.com/tlpi

1072

$./pmsg_create -cx /mq
$./pmsg_getattr /mq
Maximum # of messages on queue: 10

Maximum message size: 8192
of messages currently on queue: 0
$./pmsg_unlink /mq Remove message queue

From the above output, we see that the Linux default values for mg_maxmsg and
mq_msgsize are 10 and 8192, respectively.

There is a wide variation in the implementation-defined defaults for mq_maxmsg
and mgq_msgsize. Portable applications generally need to choose explicit values for
these attributes, rather than relying on the defaults.

Modifying message queue attributes

The mq_setattr() function sets attributes of the message queue description associ-
ated with the message queue descriptor mgdes, and optionally returns information
about the message queue.

#include <mqueue.h>

int mq_setattr(mqd_t mgdes, const struct mq_attr *newattr,
struct mq_attr *oldattr);

Returns 0 on success, or —1 on error

The mq_setattr() function performs the following tasks:

e It uses the mq_flags field in the mgq_attr structure pointed to by newattr to
change the flags of the message queue description associated with the descrip-
tor mqdes.

o If oldattr is non-NULL, it returns an mgq_atlr structure containing the previous
message queue description flags and message queue attributes (i.e., the same
task as is performed by mq_getattr()).

The only attribute that SUSv3 specifies that can be changed using mq_setattr() is the
state of the 0_NONBLOCK flag.

Allowing for the possibility that a particular implementation may define other
modifiable flags, or that SUSv3 may add new flags in the future, a portable applica-
tion should change the state of the 0_NONBLOCK flag by using mgq_getattr() to retrieve
the mq_flags value, modifying the 0_NONBLOCK bit, and calling mq_setattr() to change the
mq_flags settings. For example, to enable 0_NONBLOCK, we would do the following:

if (mq_getattr(mqd, &attr) == -1)
errExit("mq_getattr");

attr.mq_flags |= O_NONBLOCK;

if (mq_setattr(mqd, &attr, NULL) == -1)
errExit("mg_setattr");

The Linux Programming Interface

Chapter 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

52.5

52.5.1

Exchanging Messages
In this section, we look at the functions that are used to send messages to and receive

messages from a queue.

Sending Messages

The mq_send() function adds the message in the buffer pointed to by msg_ptr to the
message queue referred to by the descriptor mgdes.

#include <mqueue.h>

int mq_send(mqd_t mgdes, const char *msg ptr, size_t msg len,
unsigned int msg prio);

Returns 0 on success, or —1 on error

The msg_len argument specifies the length of the message pointed to by msg_ptr.
This value must be less than or equal to the mg_msgsize attribute of the queue;
otherwise, mg_send() fails with the error EMSGSIZE. Zero-length messages are
permitted.

Each message has a nonnegative integer priority, specified by the msg prio
argument. Messages are ordered within the queue in descending order of priority
(i.e., 0 is the lowest priority). When a new message is added to the queue, it is
placed after any other messages of the same priority. If an application doesn’t need
to use message priorities, it is sufficient to always specify msg_prio as 0.

As noted at the beginning of this chapter, the type attribute of System V messages
provides different functionality. System V messages are always queued in FIFO
order, but msgrcu() allows us to select messages in various ways: in FIFO order,
by exact type, or by highest type less than or equal to some value.

SUSv3 allows an implementation to advertise its upper limit for message priori-
ties, either by defining the constant MQ_PRIO_MAX or via the return from
sysconf(_SC_MQ_PRIO_MAX). SUSv3 requires this limit to be at least 32
(_POSIX_MQ_PRIO_MAX); that is, priorities at least in the range 0 to 31 are available.
However, the actual range on implementations is highly variable. For example,
on Linux, this constant has the value 32,768; on Solaris, it is 32; and on Trub64,
it is 256.

If the message queue is already full (i.e., the mg_maxmsg limit for the queue has
been reached), then a further mq_send() either blocks until space becomes available
in the queue, or, if the 0_NONBLOCK flag is in effect, fails immediately with the error
EAGAIN.

The program in Listing 52-4 provides a command-line interface to the
mq_send() function. We demonstrate the use of this program in the next section.

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1073
http://lwww.nostarch.com/tlpi

52.5.2

1074

Listing 52-4: Writing a message to a POSIX message queue

pmsg/pmsg_send.c
#include <mqueue.h>

#include <fcntl.h> /* For definition of O_NONBLOCK */

#include "tlpi_hdr.h"

static void
usageError(const char *progName)

fprintf(stderr, "Usage: %s [-n] name msg [prio]\n", progName);
fprintf(stderr, " -n Use O_NONBLOCK flag\n");
exit(EXIT FAILURE);

}

int
main(int argc, char *argv[])
{

int flags, opt;

mqd_t mqd;

unsigned int prio;

flags = O_WRONLY;

while ((opt = getopt(argc, argv, "n")) != -1) {
switch (opt) {
case 'n': flags |= O_NONBLOCK; break;
default: usageError(argv[0]);
}

}

if (optind + 1 >= argc)
usageError (argv[0]);

mqd = mq_open(argv[optind], flags);
if (mgd == (mqd_t) -1)
errExit("mq_open");

prio = (argc > optind + 2) ? atoi(argv[optind + 2]) : 0;
if (mg_send(mqd, argv[optind + 1], strlen(argv[optind + 1]), prio) == -1)

errExit("mq_send");
exit(EXIT_SUCCESS);

pmsg/pmsg_send.c

Receiving Messages

The mq_receive() function removes the oldest message with the highest priority
from the message queue referred to by mgdes and returns that message in the
buffer pointed to by msg_ptr.

The Linux Programming Interface

Chapter 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

#include <mqueue.h>

ssize_t mq_receive(mqd_t mgdes, char *msg pitr, size_t msg len,
unsigned int *msg prio);

Returns number of bytes in received message on success, or —1 on error

The msg_len argument is used by the caller to specify the number of bytes of space
available in the buffer pointed to by msg_ptr.

Regardless of the actual size of the message, msg_len (and thus the size of the
buffer pointed to by msg_ptr) must be greater than or equal to the mq_msgsize
attribute of the queue; otherwise, mq_receive() fails with the error EMSGSIZE. If we
don’t know the value of the mq_msgsize attribute of a queue, we can obtain it using
mq_getattr(). (In an application consisting of cooperating processes, the use of
mq_getattr() can usually be dispensed with, because the application can typically
decide on a queue’s mq_msgsize setting in advance.)

If msg_prio is not NULL, then the priority of the received message is copied into
the location pointed to by msg_prio.

If the message queue is currently empty, then mg_receive() either blocks until a
message becomes available, or, if the 0_NONBLOCK flag is in effect, fails immediately
with the error EAGAIN. (There is no equivalent of the pipe behavior where a reader
sees end-of-file if there are no writers.)

The program in Listing 52-5 provides a command-line interface to the mq_receive()
function. The command format for this program is shown in the usageError() function.

The following shell session demonstrates the use of the programs in Listing 52-4
and Listing 52-5. We begin by creating a message queue and sending a few messages
with different priorities:

$./pmsg_create -cx /mq

$./pmsg_send /mq msg-a 5

$./pmsg_send /mq msg-b 0

$./pmsg_send /mq msg-c 10

We then execute a series of commands to retrieve messages from the queue:

$./pmsg_receive /mq

Read 5 bytes; priority = 10
msg-c

$./pmsg_receive /mq

Read 5 bytes; priority =5
msg-a

$./pmsg_receive /mq

Read 5 bytes; priority =0

msg-b

As we can see from the above output, the messages were retrieved in order of priority.
At this point, the queue is now empty. When we perform another blocking
receive, the operation blocks:

$./pmsg_receive /mq
Blocks; we type Control-C to terminate the program

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1075
http://lwww.nostarch.com/tlpi

1076

On the other hand, if we perform a nonblocking receive, the call returns immedi-
ately with a failure status:

$./pmsg_receive -n /mq
ERROR [EAGAIN/EWOULDBLOCK Resource temporarily unavailable] mq_receive

Listing 52-5: Reading a message from a POSIX message queue

pmsg/pmsg_receive.c

#include <mqueue.h>
#include <fcntl.h> /* For definition of O_NONBLOCK */
#include "tlpi_hdr.h"

static void
usageError(const char *progName)

fprintf(stderr, "Usage: %s [-n] name\n", progName);
fprintf(stderr, " -n Use O_NONBLOCK flag\n");
exit(EXIT_FAILURE);

}

int
main(int argc, char *argv[])
{
int flags, opt;
mqd_t mqd;
unsigned int prio;
void *buffer;
struct mq_attr attr;
ssize_t numRead;

flags = O_RDONLY;

while ((opt = getopt(argc, argv, "n")) != -1) {
switch (opt) {
case 'n': flags |= O_NONBLOCK; break;
default: usageError(argv[0]);
}

}

if (optind >= argc)
usageError (argv[0]);

mqd = mq_open(argv[optind], flags);
if (mqd == (mqd_t) -1)
errExit("mq_open");

if (mg_getattr(mgd, &attr) == -1)
errExit("mq_getattr");

buffer = malloc(attr.mq _msgsize);

if (buffer == NULL)
errExit("malloc");

The Linux Programming Interface

Chapter 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

52.5.3

52.6

numRead = mq_receive(mqd, buffer, attr.mq_msgsize, &prio);
if (numRead == -1)
errkxit("mq_receive");

printf("Read %1d bytes; priority = %u\n", (long) numRead, prio);

if (write(STDOUT FILENO, buffer, numRead) == -1)
errExit("write");

write(STDOUT FILENO, "\n", 1);

exit(EXIT SUCCESS);

pmsg/pmsg_receive.c

Sending and Receiving Messages with a Timeout

The mq_timedsend() and mq_timedreceive() functions are exactly like mq_send() and
mq_recetve(), except that if the operation can’t be performed immediately, and the
0_NONBLOCK flag is not in effect for the message queue description, then the
abs_timeout argument specifies a limit on the time for which the call will block.

#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mgdes, const char *msg ptr, size_t msg len,
unsigned int msg prio, const struct timespec *abs_timeout);
Returns 0 on success, or —1 on error

ssize_t mq_timedreceive(mqd_t mgdes, char *msg pir, size_t msg len,
unsigned int *msg prio, const struct timespec *abs_timeout);

Returns number of bytes in received message on success, or —1 on error

The abs_timeout argument is a timespec structure (Section 23.4.2) that specifies the
timeout as an absolute value in seconds and nanoseconds since the Epoch. To per-
form a relative timeout, we can fetch the current value of the CLOCK_REALTIME clock
using clock_gettime() and add the required amount to that value to produce a suit-
ably initialized tZmespec structure.

If a call to mq_timedsend() or mq_timedreceive() times out without being able to
complete its operation, then the call fails with the error ETIMEDOUT.

On Linux, specifying abs_timeout as NULL means an infinite timeout. However,
this behavior is not specified in SUSv3, and portable applications can’t rely on it.

The mgq_timedsend() and mq_timedreceive() functions originally derive from
POSIX.1d (1999) and are not available on all UNIX implementations.

Message Notification

A feature that distinguishes POSIX message queues from their System V counter-
parts is the ability to receive asynchronous notification of the availability of a message
on a previously empty queue (i.e., when the queue transitions from being empty to
nonempty). This feature means that instead of making a blocking mgq_receive() call

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queves 1077
http://lwww.nostarch.com/tlpi

1078

or marking the message queue descriptor nonblocking and performing periodic
mq_recetve() calls (“polls”) on the queue, a process can request a notification of mes-
sage arrival and then perform other tasks until it is notified. A process can choose
to be notified either via a signal or via invocation of a function in a separate thread.

The notification feature of POSIX message queues is similar to the notification
facility that we described for POSIX timers in Section 23.6. (Both of these APIs
originated in POSIX.1b.)

The mq_notify() function registers the calling process to receive a notification when
a message arrives on the empty queue referred to by the descriptor mgdes.

#include <mqueue.h>

int mq_notify(mqd_t mgqdes, const struct sigevent *notification);

Returns 0 on success, or —1 on error

The notification argument specifies the mechanism by which the process is to be
notified. Before going into the details of the notification argument, we note a few
points about message notification:

e At any time, only one process (“the registered process”) can be registered to
receive a notification from a particular message queue. If there is already a pro-
cess registered for a message queue, further attempts to register for that queue
fail (mq_notify() fails with the error EBUSY).

e The registered process is notified only when a new message arrives on a queue
that was previously empty. If a queue already contains messages at the time of
the registration, a notification will occur only after the queue is emptied and a
new message arrives.

e After one notification is sent to the registered process, the registration is
removed, and any process can then register itself for notification. In other
words, as long as a process wishes to keep receiving notifications, it must rereg-
ister itself after each notification by once again calling mq_notify().

e The registered process is notified only if some other process is not currently
blocked in a call to mq_receive() for the queue. If some other process is blocked
in mgq_receive(), that process will read the message, and the registered process
will remain registered.

e A process can explicitly deregister itself as the target for message notification
by calling mq_notify() with a notification argument of NULL.

We already showed the sigevent structure that is used to type the notification argu-
ment in Section 23.6.1. Here, we present the structure in simplified form, showing
just those fields relevant to the discussion of mq_notify():

union sigval {

int sival_int; /* Integer value for accompanying data */
void *sival ptr; /* Pointer value for accompanying data */
};
The Linux Programming Interface
Chapter 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

52.6.1

struct sigevent {

};

int sigev_notify; /* Notification method */
int sigev_signo; /* Notification signal for SIGEV_SIGNAL */
union sigval sigev_value; /* Value passed to signal handler or

thread function */
void (*sigev_notify function) (union sigval);
/* Thread notification function */
void *sigev_notify attributes; /* Really 'pthread attr t *' */

The sigev_notify field of this structure is set to one of the following values:

SIGEV_NONE

Register this process for notification, but when a message arrives on the
previously empty queue, don’t actually notify the process. As usual, the
registration is removed when a new message arrives on an empty queue.

SIGEV_SIGNAL

Notify the process by generating the signal specified in the sigev_signo field.
The sigev_value field specifies data to accompany the signal (Section 22.8.1).
This data can be retrieved via the si_value field of the siginfo_t structure that
is passed to the signal handler or returned by a call to sigwaitinfo() or
sigtimedwait(). The following fields in the siginfo_t structure are also filled in:
si_code, with the value SI_MESGQ; si_signo, with the signal number; si_pid, with
the process ID of the process that sent the message; and si_uid, with the real
user ID of the process that sent the message. (The si_pid and si_uid fields are
not set on most other implementations.)

SIGEV_THREAD

Notify the process by calling the function specified in sigev_notify_function
as if it were the start function in a new thread. The sigev_notify_attributes
field can be specified as NULL or as a pointer to a pthread_attr_t structure
that defines attributes for the thread (Section 29.8). The union sigval value
specified in sigev_value is passed as the argument of this function.

Receiving Notification via a Signal

Listing 52-6 provides an example of message notification using signals. This pro-
gram performs the following steps:

1.

Open the message queue named on the command line in nonblocking mode @,
determine the mq_msgsize attribute for the queue @, and allocate a buffer of
that size for receiving messages ®.

Block the notification signal (SIGUSR1) and establish a handler for it ®.

Make an initial call to mq_notify() to register the process to receive message
notification ®.

Execute an infinite loop that performs the following steps:

a)

Call sigsuspend(), which unblocks the notification signal and waits until the
signal is caught ®. Return from this system call indicates that a message

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1079
http://lwww.nostarch.com/tlpi

notification has occurred. At this point, the process will have been deregis-
tered for message notification.

b) Call mq_notify() to reregister this process to receive message notification @.

c) Execute awhile loop that drains the queue by reading as many messages as
possible ®.

Listing 52-6: Receiving message notification via a signal

pmsg/mq_notify_sig.c
#include <signal.h>

#include <mqueue.h>

#include <fcntl.h> /* For definition of O_NONBLOCK */

#include "tlpi_hdr.h"

#define NOTIFY_SIG SIGUSR1

static void
handler(int sig)
{

}

/* Just interrupt sigsuspend() */

int
main(int argc, char *argv[])

struct sigevent sev;

mqd_t mqd;

struct mq_attr attr;

void *buffer;

ssize t numRead;

sigset_t blockMask, emptyMask;
struct sigaction sa;

if (argc != 2 || strcmp(argv[1], "--help") == 0)
usageErr("%s mg-name\n", argv[0]);

® mqd = mq_open(argv[1], O_RDONLY | O_NONBLOCK);
if (mgd == (mqd_t) -1)
errkxit("mq_open");

@ if (mq_getattr(mqd, attr) == -1)
errExit("mq_getattr");

® buffer = malloc(attr.mq_msgsize);
if (buffer == NULL)
errExit("malloc");

® sigemptyset(8blockMask);
sigaddset(8blockMask, NOTIFY_SIG);
if (sigprocmask(SIG_BLOCK, &blockMask, NULL) == -1)
errExit("sigprocmask");

The Linux Programming Interface
1080 Choprer 52 © 2010 by Michael Kerrisk
http://lwww.nostarch.com/tlpi

sigemptyset(&sa.sa_mask);

sa.sa_flags = 0;

sa.sa_handler = handler;

if (sigaction(NOTIFY_SIG, &sa, NULL) == -1)
errExit("sigaction");

sev.sigev_notify = SIGEV_SIGNAL;

sev.sigev_signo = NOTIFY_SIG;

if (mg_notify(mqd, &sev) == -1)
errExit("mq_notify");

sigemptyset(&emptyMask);

for (55) {
sigsuspend(8emptyMask); /* Wait for notification signal */

if (mg_notify(mqd, &sev) == -1)
errExit("mq_notify");

while ((numRead = mq_receive(mqd, buffer, attr.mq_msgsize, NULL)) >= 0)
printf("Read %1d bytes\n", (long) numRead);

if (errno != EAGAIN) /* Unexpected error */
errkExit("mq_receive");

pmsg/mq_notify sig.c

Various aspects of the program in Listing 52-6 merit further comment:

We block the notification signal and use sigsuspend() to wait for it, rather than
pause(), to prevent the possibility of missing a signal that is delivered while the
program is executing elsewhere (i.e., is not blocked waiting for signals) in the
for loop. If this occurred, and we were using pause() to wait for signals, then the
next call to pause() would block, even though a signal had already been delivered.

We open the queue in nonblocking mode, and, whenever a notification occurs,
we use awhile loop to read all messages from the queue. Emptying the queue in
this way ensures that a further notification is generated when a new message
arrives. Employing nonblocking mode means that the while loop will terminate
(mq_receive() will fail with the error EAGAIN) when we have emptied the queue.
(This approach is analogous to the use of nonblocking I/O with edge-triggered
1/ 0 notification, which we describe in Section 63.1.1, and is employed for sim-
ilar reasons.)

Within the for loop, it is important that we reregister for message notification
before reading all messages from the queue. If we reversed these steps, the fol-
lowing sequence could occur: all messages are read from the queue, and the
while loop terminates; another message is placed on the queue; mq_notify() is
called to reregister for message notification. At this point, no further notifica-
tion signal would be generated, because the queue is already nonempty. Conse-
quently, the program would remain permanently blocked in its next call to
sigsuspend().

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1081
http://lwww.nostarch.com/tlpi

52.6.2 Receiving Notification via a Thread

Listing 52-7 provides an example of message notification using threads. This pro-
gram shares a number of design features with the program in Listing 52-6:

e When message notification occurs, the program reenables notification before
draining the queue @.

e Nonblocking mode is employed so that, after receiving a notification, we can
completely drain the queue without blocking ®.

Listing 52-7: Receiving message notification via a thread

pmsg/mq_notify_thread.c

#include <pthread.h>

#include <mqueue.h>

#include <signal.h>

#include <fcntl.h> /* For definition of O NONBLOCK */
#include "tlpi_hdr.h"

static void notifySetup(mqd_t *mqdp);

static void /* Thread notification function */
@ threadFunc(union sigval sv)

{

ssize t numRead;
mqd_t *mqdp;

void *buffer;
struct mg_attr attr;

mqdp = sv.sival ptr;

if (mq_getattr(*mqdp, &attr) == -1)
errExit("mq_getattr");

buffer = malloc(attr.mq _msgsize);
if (buffer == NULL)
errExit("malloc");

©) notifySetup(mqdp);

while ((numRead = mq_receive(*mqdp, buffer, attr.mq_msgsize, NULL)) >= 0)
printf("Read %1d bytes\n", (long) numRead);

if (errno != EAGAIN) /* Unexpected error */
errExit("mq_receive");

free(buffer);
}

static void
notifySetup(mgd_t *mqdp)

struct sigevent sev;
1082 cChapter 52 The Linux Programming Interface

© 2010 by Michael Kerrisk
http://www.nostarch.com/tlpi

® sev.sigev_notify = SIGEV_THREAD; /* Notify via thread */
sev.sigev_notify function = threadFunc;
sev.sigev_notify attributes = NULL;
/* Could be pointer to pthread attr t structure */

® sev.sigev_value.sival_ptr = mqdp; /* Argument to threadFunc() */
if (mq_notify(*mqdp, &sev) == -1)
errExit("mq_notify");
}
int
main(int argc, char *argv([])
{

mqd_t mqd;

if (argc !'= 2 || strcmp(argv[1], "--help") == 0)
usageErr("%s mg-name\n", argv[o]);

® mqd = mq_open(argv[1], O _RDONLY | O_NONBLOCK);
if (mqd == (mqd_t) -1)
errExit("mq_open");

® notifySetup(8mqd);
pause(); /* Wait for notifications via thread function */

pmsg/mq_notify_thread.c

Note the following further points regarding the design of the program in Listing 52-7:

e The program requests notification via a thread, by specifying SIGEV_THREAD in
the sigev_notify field of the sigevent structure passed to mg_notify(). The thread’s
start function, threadFunc(), is specified in the sigev_notify_function field ®.

e After enabling message notification, the main program pauses indefinitely ®;
message notifications are delivered by invocations of threadFunc() in a separate
thread .

e We could have made the message queue descriptor, mgd, visible in threadFunc()
by making it a global variable. However, we adopted a different approach to
illustrate the alternative: we place the address of the message queue descriptor
in the sigev_value.sival_ptr field that is passed to mq_notify() ®. When threadFunc()
is later invoked, this address is passed as its argument.

We must assign a pointer to the message queue descriptor to sigev_value.sival_ptr,
rather than (some cast version of) the descriptor itself because, other than the stip-
ulation that it is not an array type, SUSv3 makes no guarantee about the nature or
size of the type used to represent the mqd_t data type.

52.7 Linux-Specific Features

The Linux implementation of POSIX message queues provides a number of features
that are unstandardized but nevertheless useful.

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1083
http://lwww.nostarch.com/tlpi

Displaying and deleting message queue objects via the command line

In Chapter 51, we mentioned that POSIX IPC objects are implemented as files in
virtual file systems, and that these files can be listed and removed with Is and rm. In
order to do this with POSIX message queues, we must mount the message queue
file system using a command of the following form:

mount -t mqueue source target

The source can be any name at all (specifying the string none is typical). Its only sig-
nificance is that it appears in /proc/mounts and is displayed by the mount and df com-
mands. The target is the mount point for the message queue file system.

The following shell session shows how to mount the message queue file system
and display its contents. We begin by creating a mount point for the file system and
mounting it:

$ su Privilege is required for mount
Password:

mkdir /dev/mqueue

mount -t mqueue none /dev/mqueue

exit Terminate root shell session

Next, we display the record in /proc/mounts for the new mount, and then display the
permissions for the mount directory:

$ cat /proc/mounts | grep mqueue

none /dev/mqueue mqueue rw O O

$ 1s -1d /dev/mqueue

drwxrwxrwt 2 root root 40 Jul 26 12:09 /dev/mqueue

One point to note from the output of the Is command is that the message queue
file system is automatically mounted with the sticky bit set for the mount directory.
(We see this from the fact that there is a ¢ in the other-execute permission field dis-
played by /s.) This means that an unprivileged process can unlink only message
queues that it owns.

Next, we create a message queue, use /s to show that it is visible in the file system,
and then delete the message queue:

$./pmsg_create -c /newq
$ 1s /dev/mqueue

newq

$ rm /dev/mqueue/newq

Obtaining information about a message queue

We can display the contents of the files in the message queue file system. Each of
these virtual files contains information about the associated message queue:

$./pmsg_create -c /mq Create a queue

$./pmsg_send /mq abcdefg Write 7 bytes to the queue
$ cat /dev/mqueue/mq

QSIZE:7 NOTIFY:0 SIGNO:0 NOTIFY_PID:0

The Linux Programming Interface
1084 Choprer 52 © 2010 by Michael Kerrisk
http://lwww.nostarch.com/tlpi

52.8

The 0SIZE field is a count of the total number of bytes of data in the queue. The
remaining fields relate to message notification. If NOTIFY_PID is nonzero, then the
process with the specified process ID has registered for message notification from this
queue, and the remaining fields provide information about the kind of notification:

e NOTIFY is a value corresponding to one of the sigev_notify constants: 0 for
SIGEV_SIGNAL, 1 for SIGEV NONE, or 2 for SIGEV_THREAD.

e If the notification method is SIGEV_SIGNAL, the SIGNO field indicates which signal
is delivered for message notification.

The following shell session illustrates the information that appears in these fields:

$./mq_notify sig /mq & Notify using SIGUSR1 (signal 10 on x86)
[1] 18158

$ cat /dev/mqueue/mq

QSIZE:7 NOTIFY:0 SIGNO:10 NOTIFY_PID:18158

$ kill %1

[1] Terminated ./mq_notify sig /mq

$./mq_notify thread /mq & Notify using a thread

[2] 18160

$ cat /dev/mqueue/mq

QSIZE:7 NOTIFY:2 SIGNO:0 NOTIFY_PID:18160

Using message queves with alternative 1/0 models

In the Linux implementation, a message queue descriptor is really a file descriptor.
We can monitor this file descriptor using I/O multiplexing system calls (select() and
poll()) or the epoll API. (See Chapter 63 for further details of these APIs.) This
allows us to avoid the difficulty that we encounter with System V messages queues
when trying to wait for input on both a message queue and a file descriptor (refer
to Section 46.9). However, this feature is nonstandard; SUSv3 doesn’t require that
message queue descriptors are implemented as file descriptors.

Message Queue Limits

SUSv3 defines two limits for POSIX message queues:

MQ_PRIO_MAX

We described this limit, which defines the maximum priority for a message,
in Section 52.5.1.

MQ_OPEN_MAX

An implementation can define this limit to indicate the maximum number
of message queues that a process can hold open. SUSv3 requires this limit
to be at least POSIX MQ OPEN_MAX (8). Linux doesn’t define this limit. Instead,
because Linux implements message queue descriptors as file descriptors
(Section 52.7), the applicable limits are those that apply to file descriptors.
(In other words, on Linux, the per-process and system-wide limits on the
number of file descriptors actually apply to the sum of file descriptors and
message queue descriptors.) For further details on the applicable limits,
see the discussion of the RLIMIT NOFILE resource limit in Section 36.3.

The Linux Programming Interface
© 2010 by Michael Kerrisk POSIX Message Queues 1085
http://lwww.nostarch.com/tlpi

52.9

1086

As well as the above SUSv3-specified limits, Linux provides a number of /proc files
for viewing and (with privilege) changing limits that control the use of POSIX mes-
sage queues. The following three files reside in the directory /proc/sys/fs/mqueue:

msg_max
This limit specifies a ceiling for the mq_maxmsg attribute of new message
queues (i.e., a ceiling for attr.mq_maxmsg when creating a queue with
mq_open()). The default value for this limit is 10. The minimum value is 1
(10 in kernels before Linux 2.6.28). The maximum value is defined by the
kernel constant HARD_MSCMAX. The value for this constant is calculated as
(131,072 / sizeof{void *)), which evaluates to 32,768 on Linux/x86-32.
When a privileged process (CAP_SYS_RESOURCE) calls mq_open(), the msg_max
limit is ignored, but HARD_MSGMAX still acts as a ceiling for attr.mq_maxmsg.

msgsize_max
This limit specifies a ceiling for the mq_msgsize attribute of new message
queues created by unprivileged processes (i.e., a ceiling for attr.mq_msgsize
when creating a queue with mq_open()). The default value for this limit is 8192.
The minimum value is 128 (8192 in kernels before Linux 2.6.28). The max-
imum value is 1,048,576 (INT_MAX in kernels before 2.6.28). This limit is
ignored when a privileged process (CAP_SYS_RESOURCE) calls mq_open().

queues_max
This is a system-wide limit on the number of message queues that may be
created. Once this limit is reached, only a privileged process (CAP_SYS_RESOURCE)
can create new queues. The default value for this limit is 256. It can be
changed to any value in the range 0 to INT_MAX.

Linux also provides the RLIMIT_MSGQUEUE resource limit, which can be used to place a
ceiling on the amount of space that can be consumed by all of the message queues
belonging to the real user ID of the calling process. See Section 36.3 for details.

Comparison of POSIX and System V Message Queues

Section 51.2 listed various advantages of the POSIX IPC interface over the System V
IPC interface: the POSIX IPC interface is simpler and more consistent with the tradi-
tional UNIX file model, and POSIX IPC objects are reference counted, which sim-
plifies the task of determining when to delete an object. These general advantages
also apply to POSIX message queues.

POSIX message queues also have the following specific advantages over System V
message queues:

e The message notification feature allows a (single) process to be asynchronously
notified via a signal or the instantiation of a thread when a message arrives on a
previously empty queue.

e On Linux (but not other UNIX implementations), POSIX message queues can
be monitored using poll(), select(), and epoll. System V message queues don’t pro-
vide this feature.

The Linux Programming Interface

Chapter 52 © 2010 by Michael Kerrisk

http://lwww.nostarch.com/tlpi

52.10

52.11
52-1.

52-2.

52-3.

52-4.

52-5.

However, POSIX message queues also have some disadvantages compared to Sys-
tem V message queues:

e POSIX message queues are less portable. This problem applies even across Linux
systems, since message queue support is available only since kernel 2.6.6.

e The facility to select System V messages by type provides slightly greater flexi-
bility than the strict priority ordering of POSIX messages.

There is a wide variation in the manner in which POSIX message queues are
implemented on UNIX systems. Some systems provide implementations in
user space, and on at least one such implementation (Solaris 10), the mq_open()
manual page explicitly notes that the implementation can’t be considered
secure. On Linux, one of the motives for selecting a kernel implementation of
message queues was that it was deemed not possible to provide a secure user-
space implementation.

Summary

POSIX message queues allow processes to exchange data in the form of messages.
Each message has an associated integer priority, and messages are queued (and
thus received) in order of priority.

POSIX message queues have some advantages over System V message queues,
notably that they are reference counted and that a process can be asynchronously
notified of the arrival of a message on an empty queue. However, POSIX message
queues are less portable than System V message queues.

Further information

[Stevens, 1999] provides an alternative presentation of POSIX message queues and
shows a user-space implementation using memory-mapped files. POSIX message
queues are also described in some detail in [Gallmeister, 1995].

Exercises

Modify the program in Listing 52-5 (pmsg_receive.c) to accept a timeout (a relative
number of seconds) on the command line, and use mq_timedreceive() instead of
mq_recetve().

Recode the sequence-number client-server application of Section 44.8 to use POSIX
message queues.

Rewrite the file-server application of Section 46.8 to use POSIX message queues
instead of System V message queues.

Write a simple chat program (similar to talk(1), but without the curses interface)
using POSIX messages queues.

Modify the program in Listing 52-6 (mq_notify_sig.c) to demonstrate that message
notification established by mgq_notify() occurs just once. This can be done by
removing the mq_notify() call inside the for loop.

The Linux Programming Interface 1087
© 2010 by Michael Kerrisk POSIX Message Queues
http://lwww.nostarch.com/tlpi

52-6. Replace the use of a signal handler in Listing 52-6 (mq_notify_sig.c) with the use of
sigwaitinfo(). Upon return from sigwaitinfo(), display the values in the returned
siginfo_t structure. How could the program obtain the message queue descriptor in
the siginfo_t structure returned by sigwaitinfo()?

52-7. In Listing 52-7, could buffer be made a global variable and its memory allocated just
once (in the main program)? Explain your answer.

The Linux Programming Interface
1088 Choprer 52 © 2010 by Michael Kerrisk
http://lwww.nostarch.com/tlpi

