
F I L E I / O : T H E U N I V E R S A L
I / O M O D E L

We now start to look in earnest at the system call API. Files are a good place to
start, since they are central to the UNIX philosophy. The focus of this chapter is the
system calls used for performing file input and output.

We introduce the concept of a file descriptor, and then look at the system calls
that constitute the so-called universal I/O model. These are the system calls that
open and close a file, and read and write data.

We focus on I/O on disk files. However, much of the material covered here is
relevant for later chapters, since the same system calls are used for performing I/O
on all types of files, such as pipes and terminals.

Chapter 5 extends the discussion in this chapter with further details on file I/O.
One other aspect of file I/O, buffering, is complex enough to deserve its own chapter.
Chapter 13 covers I/O buffering in the kernel and in the stdio library.

4.1 Overview

All system calls for performing I/O refer to open files using a file descriptor, a (usually
small) nonnegative integer. File descriptors are used to refer to all types of open
files, including pipes, FIFOs, sockets, terminals, devices, and regular files. Each
process has its own set of file descriptors.

By convention, most programs expect to be able to use the three standard file
descriptors listed in Table 4-1. These three descriptors are opened on the program’s

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

70 Chapter 4

behalf by the shell, before the program is started. Or, more precisely, the program
inherits copies of the shell’s file descriptors, and the shell normally operates with
these three file descriptors always open. (In an interactive shell, these three file
descriptors normally refer to the terminal under which the shell is running.) If I/O
redirections are specified on a command line, then the shell ensures that the file
descriptors are suitably modified before starting the program.

When referring to these file descriptors in a program, we can use either the numbers
(0, 1, or 2) or, preferably, the POSIX standard names defined in <unistd.h>.

Although the variables stdin, stdout, and stderr initially refer to the process’s
standard input, output, and error, they can be changed to refer to any file by
using the freopen() library function. As part of its operation, freopen() may
change the file descriptor underlying the reopened stream. In other words,
after an freopen() on stdout, for example, it is no longer safe to assume that the
underlying file descriptor is still 1.

The following are the four key system calls for performing file I/O (programming
languages and software packages typically employ these calls only indirectly, via I/O
libraries):

 fd = open(pathname, flags, mode) opens the file identified by pathname, returning
a file descriptor used to refer to the open file in subsequent calls. If the file
doesn’t exist, open() may create it, depending on the settings of the flags bit-
mask argument. The flags argument also specifies whether the file is to be
opened for reading, writing, or both. The mode argument specifies the permis-
sions to be placed on the file if it is created by this call. If the open() call is not
being used to create a file, this argument is ignored and can be omitted.

 numread = read(fd, buffer, count) reads at most count bytes from the open file
referred to by fd and stores them in buffer. The read() call returns the number of
bytes actually read. If no further bytes could be read (i.e., end-of-file was
encountered), read() returns 0.

 numwritten = write(fd, buffer, count) writes up to count bytes from buffer to the
open file referred to by fd. The write() call returns the number of bytes actually
written, which may be less than count.

 status = close(fd) is called after all I/O has been completed, in order to release
the file descriptor fd and its associated kernel resources.

Before we launch into the details of these system calls, we provide a short demon-
stration of their use in Listing 4-1. This program is a simple version of the cp(1)
command. It copies the contents of the existing file named in its first command-
line argument to the new file named in its second command-line argument.

Table 4-1: Standard file descriptors

File descriptor Purpose POSIX name stdio stream

0 standard input STDIN_FILENO stdin
1 standard output STDOUT_FILENO stdout
2 standard error STDERR_FILENO stderr

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 71

We can use the program in Listing 4-1 as follows:

$./copy oldfile newfile

Listing 4-1: Using I/O system calls
 fileio/copy.c

#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#ifndef BUF_SIZE /* Allow "cc -D" to override definition */
#define BUF_SIZE 1024
#endif

int
main(int argc, char *argv[])
{

 int inputFd, outputFd, openFlags;
 mode_t filePerms;
 ssize_t numRead;
 char buf[BUF_SIZE];

 if (argc != 3 || strcmp(argv[1], "--help") == 0)
 usageErr("%s old-file new-file\n", argv[0]);

 /* Open input and output files */

 inputFd = open(argv[1], O_RDONLY);
 if (inputFd == -1)
 errExit("opening file %s", argv[1]);

 openFlags = O_CREAT | O_WRONLY | O_TRUNC;
 filePerms = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |

 S_IROTH | S_IWOTH; /* rw-rw-rw- */
 outputFd = open(argv[2], openFlags, filePerms);
 if (outputFd == -1)
 errExit("opening file %s", argv[2]);

 /* Transfer data until we encounter end of input or an error */

 while ((numRead = read(inputFd, buf, BUF_SIZE)) > 0)
 if (write(outputFd, buf, numRead) != numRead)

 fatal("write() returned error or partial write occurred");
 if (numRead == -1)
 errExit("read");

 if (close(inputFd) == -1)
 errExit("close input");
 if (close(outputFd) == -1)
 errExit("close output");

 exit(EXIT_SUCCESS);
}

 fileio/copy.c

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

72 Chapter 4

4.2 Universality of I/O

One of the distinguishing features of the UNIX I/O model is the concept of
universality of I/O. This means that the same four system calls—open(), read(), write(),
and close()—are used to perform I/O on all types of files, including devices such as
terminals. Consequently, if we write a program using only these system calls, that
program will work on any type of file. For example, the following are all valid uses
of the program in Listing 4-1:

$./copy test test.old Copy a regular file
$./copy a.txt /dev/tty Copy a regular file to this terminal
$./copy /dev/tty b.txt Copy input from this terminal to a regular file
$./copy /dev/pts/16 /dev/tty Copy input from another terminal

Universality of I/O is achieved by ensuring that each file system and device driver
implements the same set of I/O system calls. Because details specific to the file sys-
tem or device are handled within the kernel, we can generally ignore device-specific
factors when writing application programs. When access to specific features of a
file system or device is required, a program can use the catchall ioctl() system call
(Section 4.8), which provides an interface to features that fall outside the universal
I/O model.

4.3 Opening a File: open()

The open() system call either opens an existing file or creates and opens a new file.

The file to be opened is identified by the pathname argument. If pathname is a sym-
bolic link, it is dereferenced. On success, open() returns a file descriptor that is used
to refer to the file in subsequent system calls. If an error occurs, open() returns –1
and errno is set accordingly.

The flags argument is a bit mask that specifies the access mode for the file, using
one of the constants shown in Table 4-2.

Early UNIX implementations used the numbers 0, 1, and 2 instead of the
names shown in Table 4-2. Most modern UNIX implementations define these
constants to have those values. Thus, we can see that O_RDWR is not equivalent to
O_RDONLY | O_WRONLY; the latter combination is a logical error.

When open() is used to create a new file, the mode bit-mask argument specifies the
permissions to be placed on the file. (The mode_t data type used to type mode is an
integer type specified in SUSv3.) If the open() call doesn’t specify O_CREAT, mode can
be omitted.

#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags, ... /* mode_t mode */);

Returns file descriptor on success, or –1 on error

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 73

We describe file permissions in detail in Section 15.4. Later, we’ll see that the per-
missions actually placed on a new file depend not just on the mode argument, but
also on the process umask (Section 15.4.6) and the (optionally present) default
access control list (Section 17.6) of the parent directory. In the meantime, we’ll just
note that the mode argument can be specified as a number (typically in octal) or,
preferably, by ORing (|) together zero or more of the bit-mask constants listed in
Table 15-4, on page 295.

Listing 4-2 shows examples of the use of open(), some of which employ addi-
tional flags bits that we describe shortly.

Listing 4-2: Examples of the use of open()

 /* Open existing file for reading */

 fd = open("startup", O_RDONLY);
 if (fd == -1)
 errExit("open");

/* Open new or existing file for reading and writing, truncating to zero
bytes; file permissions read+write for owner, nothing for all others */

 fd = open("myfile", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
 if (fd == -1)
 errExit("open");

 /* Open new or existing file for writing; writes should always
 append to end of file */

 fd = open("w.log", O_WRONLY | O_CREAT | O_APPEND,
 S_IRUSR | S_IWUSR);

 if (fd == -1)
 errExit("open");

File descriptor number returned by open()

SUSv3 specifies that if open() succeeds, it is guaranteed to use the lowest-numbered
unused file descriptor for the process. We can use this feature to ensure that a file
is opened using a particular file descriptor. For example, the following sequence
ensures that a file is opened using standard input (file descriptor 0).

Table 4-2: File access modes

Access mode Description

O_RDONLY Open the file for reading only
O_WRONLY Open the file for writing only
O_RDWR Open the file for both reading and writing

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

74 Chapter 4

if (close(STDIN_FILENO) == -1) /* Close file descriptor 0 */
 errExit("close");

fd = open(pathname, O_RDONLY);
if (fd == -1)

 errExit("open");

Since file descriptor 0 is unused, open() is guaranteed to open the file using that
descriptor. In Section 5.5, we look at the use of dup2() and fcntl() to achieve a similar
result, but with more flexible control over the file descriptor used. In that section,
we also show an example of why it can be useful to control the file descriptor on
which a file is opened.

4.3.1 The open() flags Argument
In some of the example open() calls shown in Listing 4-2, we included other bits
(O_CREAT, O_TRUNC, and O_APPEND) in flags in addition to the file access mode. We now
consider the flags argument in more detail. Table 4-3 summarizes the full set of con-
stants that can be bit-wise ORed (|) in flags. The final column indicates which of
these constants are standardized in SUSv3 or SUSv4.

Table 4-3: Values for the flags argument of open()

Flag Purpose SUS?

O_RDONLY Open for reading only v3

O_WRONLY Open for writing only v3

O_RDWR Open for reading and writing v3

O_CLOEXEC Set the close-on-exec flag (since Linux 2.6.23) v4

O_CREAT Create file if it doesn’t already exist v3

O_DIRECTORY Fail if pathname is not a directory v4

O_EXCL With O_CREAT: create file exclusively v3

O_LARGEFILE Used on 32-bit systems to open large files

O_NOCTTY Don’t let pathname become the controlling terminal v3

O_NOFOLLOW Don’t dereference symbolic links v4

O_TRUNC Truncate existing file to zero length v3

O_APPEND Writes are always appended to end of file v3

O_ASYNC Generate a signal when I/O is possible

O_DIRECT File I/O bypasses buffer cache

O_DSYNC Provide synchronized I/O data integrity (since Linux 2.6.33) v3

O_NOATIME Don’t update file last access time on read() (since Linux 2.6.8)

O_NONBLOCK Open in nonblocking mode v3

O_SYNC Make file writes synchronous v3

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 75

The constants in Table 4-3 are divided into the following groups:

 File access mode flags: These are the O_RDONLY, O_WRONLY, and O_RDWR flags described
earlier. Only one of these values should be specified in flags. The access mode
can be retrieved using the fcntl() F_GETFL operation (Section 5.3).

 File creation flags: These are the flags shown in the second part of Table 4-3.
They control various aspects of the behavior of the open() call itself. These flags
can’t be retrieved or changed.

 Open file status flags: These are the remaining flags in Table 4-3. They affect the
semantics of subsequent I/O system calls and can be retrieved and modified
using the fcntl() F_GETFL and F_SETFL operations (Section 5.3). These flags are
sometimes simply called the file status flags.

Since kernel 2.6.22, the Linux-specific files in the directory /proc/PID/fdinfo
can be read to obtain information about the file descriptors of any process on
the system. There is one file in this directory for each of the process’s open file
descriptors, with a name that matches the number of the descriptor. The pos
field in this file shows the current file offset (Section 4.7). The flags field is an
octal number that shows the file access mode flags and open file status flags.
(To decode this number, we need to look at the numeric values of these flags
in the C library header files.)

Details for the flags constants are as follows:

O_APPEND

Writes are always appended to the end of the file. We discuss the signifi-
cance of this flag in Section 5.1.

O_ASYNC

Generate a signal when I/O becomes possible on the file descriptor
returned by open(). This feature, termed signal-driven I/O, is available only
for certain file types, such as terminals, FIFOs, and sockets. (The O_ASYNC
flag is not specified in SUSv3; however, it, or the older synonym, FASYNC, is
found on most UNIX implementations.) On Linux, specifying the O_ASYNC
flag when calling open() has no effect. To enable signal-driven I/O, we must
instead set this flag using the fcntl() F_SETFL operation (Section 5.3). (Sev-
eral other UNIX implementations behave similarly.) Refer to Section 63.3
for more information about the O_ASYNC flag.

O_CLOEXEC (since Linux 2.6.23)
Enable the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. We
describe the FD_CLOEXEC flag in Section 27.4. Using the O_CLOEXEC flag allows a
program to avoid additional fcntl() F_GETFD and F_SETFD operations to set the
close-on-exec flag. It is also necessary in multithreaded programs to avoid
the race conditions that could occur using the latter technique. These
races can occur when one thread opens a file descriptor and then tries to
mark it close-on-exec at the same time as another thread does a fork() and
then an exec() of an arbitrary program. (Suppose that the second thread
manages to both fork() and exec() between the time the first thread opens
the file descriptor and uses fcntl() to set the close-on-exec flag.) Such races

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

76 Chapter 4

could result in open file descriptors being unintentionally passed to unsafe
programs. (We say more about race conditions in Section 5.1.)

O_CREAT

If the file doesn’t already exist, it is created as a new, empty file. This flag is
effective even if the file is being opened only for reading. If we specify
O_CREAT, then we must supply a mode argument in the open() call; otherwise,
the permissions of the new file will be set to some random value from the
stack.

O_DIRECT

Allow file I/O to bypass the buffer cache. This feature is described in Sec-
tion 13.6. The _GNU_SOURCE feature test macro must be defined in order to
make this constant definition available from <fcntl.h>.

O_DIRECTORY

Return an error (errno equals ENOTDIR) if pathname is not a directory. This
flag is an extension designed specifically for implementing opendir() (Sec-
tion 18.8). The _GNU_SOURCE feature test macro must be defined in order to
make this constant definition available from <fcntl.h>.

O_DSYNC (since Linux 2.6.33)
Perform file writes according to the requirements of synchronized I/O
data integrity completion. See the discussion of kernel I/O buffering in
Section 13.3.

O_EXCL

This flag is used in conjunction with O_CREAT to indicate that if the file
already exists, it should not be opened; instead, open() should fail, with
errno set to EEXIST. In other words, this flag allows the caller to ensure that it
is the process creating the file. The check for existence and the creation of
the file are performed atomically. We discuss the concept of atomicity in
Section 5.1. When both O_CREAT and O_EXCL are specified in flags, open() fails
(with the error EEXIST) if pathname is a symbolic link. SUSv3 requires this
behavior so that a privileged application can create a file in a known loca-
tion without there being a possibility that a symbolic link would cause the
file to be created in a different location (e.g., a system directory), which
would have security implications.

O_LARGEFILE

Open the file with large file support. This flag is used on 32-bit systems in
order to work with large files. Although it is not specified in SUSv3, the
O_LARGEFILE flag is found on several other UNIX implementations. On 64-
bit Linux implementations such as Alpha and IA-64, this flag has no effect.
See Section 5.10 for more information.

O_NOATIME (since Linux 2.6.8)
Don’t update the file last access time (the st_atime field described in Sec-
tion 15.1) when reading from this file. To use this flag, the effective user
ID of the calling process must match the owner of the file, or the process
must be privileged (CAP_FOWNER); otherwise, open() fails with the error EPERM.

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 77

(In reality, for an unprivileged process, it is the process’s file-system user
ID, rather than its effective user ID, that must match the user ID of the file
when opening a file with the O_NOATIME flag, as described in Section 9.5.)
This flag is a nonstandard Linux extension. To expose its definition from
<fcntl.h>, we must define the _GNU_SOURCE feature test macro. The O_NOATIME
flag is intended for use by indexing and backup programs. Its use can sig-
nificantly reduce the amount of disk activity, because repeated disk seeks
back and forth across the disk are not required to read the contents of a
file and to update the last access time in the file’s i-node (Section 14.4).
Functionality similar to O_NOATIME is available using the MS_NOATIME mount()
flag (Section 14.8.1) and the FS_NOATIME_FL flag (Section 15.5).

O_NOCTTY

If the file being opened is a terminal device, prevent it from becoming the
controlling terminal. Controlling terminals are discussed in Section 34.4.
If the file being opened is not a terminal, this flag has no effect.

O_NOFOLLOW

Normally, open() dereferences pathname if it is a symbolic link. However, if
the O_NOFOLLOW flag is specified, then open() fails (with errno set to ELOOP) if
pathname is a symbolic link. This flag is useful, especially in privileged pro-
grams, for ensuring that open() doesn’t dereference a symbolic link. To
expose the definition of this flag from <fcntl.h>, we must define the
_GNU_SOURCE feature test macro.

O_NONBLOCK

Open the file in nonblocking mode. See Section 5.9.

O_SYNC

Open the file for synchronous I/O. See the discussion of kernel I/O buff-
ering in Section 13.3.

O_TRUNC

If the file already exists and is a regular file, then truncate it to zero length,
destroying any existing data. On Linux, truncation occurs whether the file
is being opened for reading or writing (in both cases, we must have write per-
mission on the file). SUSv3 leaves the combination of O_RDONLY and O_TRUNC
unspecified, but most other UNIX implementations behave in the same
way as Linux.

4.3.2 Errors from open()
If an error occurs while trying to open the file, open() returns –1, and errno identi-
fies the cause of the error. The following are some possible errors that can occur
(in addition to those already noted when describing the flags argument above):

EACCES

The file permissions don’t allow the calling process to open the file in the
mode specified by flags. Alternatively, because of directory permissions,
the file could not be accessed, or the file did not exist and could not be
created.

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

78 Chapter 4

EISDIR

The specified file is a directory, and the caller attempted to open it for writ-
ing. This isn’t allowed. (On the other hand, there are occasions when it can
be useful to open a directory for reading. We consider an example in
Section 18.11.)

EMFILE

The process resource limit on the number of open file descriptors has
been reached (RLIMIT_NOFILE, described in Section 36.3).

ENFILE

The system-wide limit on the number of open files has been reached.

ENOENT

The specified file doesn’t exist, and O_CREAT was not specified, or O_CREAT
was specified, and one of the directories in pathname doesn’t exist or is a
symbolic link pointing to a nonexistent pathname (a dangling link).

EROFS

The specified file is on a read-only file system and the caller tried to open it
for writing.

ETXTBSY

The specified file is an executable file (a program) that is currently execut-
ing. It is not permitted to modify (i.e., open for writing) the executable file
associated with a running program. (We must first terminate the program
in order to be able to modify the executable file.)

When we later describe other system calls or library functions, we generally won’t
list the range of possible errors that may occur in the above fashion. (Such a list can
be found in the corresponding manual page for each system call or library func-
tion.) We do so here for two reasons. One of these is that open() is the first system
call that we describe in detail, and the above list illustrates that a system call or
library function may fail for any of a number of reasons. Second, the specific reasons
why open() may fail make an interesting list in themselves, illustrating a number of
factors and checks that come into play when a file is accessed. (The above list is
incomplete: see the open(2) manual page for more reasons why open() may fail.)

4.3.3 The creat() System Call
In early UNIX implementations, open() had only two arguments and could not be
used to create a new file. Instead, the creat() system call was used to create and open
a new file.

The creat() system call creates and opens a new file with the given pathname, or if
the file already exists, opens the file and truncates it to zero length. As its function

#include <fcntl.h>

int creat(const char *pathname, mode_t mode);

Returns file descriptor, or –1 on error

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 79

result, creat() returns a file descriptor that can be used in subsequent system calls.
Calling creat() is equivalent to the following open() call:

fd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

Because the open() flags argument provides greater control over how the file is
opened (e.g., we can specify O_RDWR instead of O_WRONLY), creat() is now obsolete,
although it may still be seen in older programs.

4.4 Reading from a File: read()

The read() system call reads data from the open file referred to by the descriptor fd.

The count argument specifies the maximum number of bytes to read. (The size_t
data type is an unsigned integer type.) The buffer argument supplies the address of
the memory buffer into which the input data is to be placed. This buffer must be at
least count bytes long.

System calls don’t allocate memory for buffers that are used to return informa-
tion to the caller. Instead, we must pass a pointer to a previously allocated
memory buffer of the correct size. This contrasts with several library functions
that do allocate memory buffers in order to return information to the caller.

A successful call to read() returns the number of bytes actually read, or 0 if end-of-
file is encountered. On error, the usual –1 is returned. The ssize_t data type is a
signed integer type used to hold a byte count or a –1 error indication.

A call to read() may read less than the requested number of bytes. For a regular
file, the probable reason for this is that we were close to the end of the file.

When read() is applied to other types of files—such as pipes, FIFOs, sockets, or
terminals—there are also various circumstances where it may read fewer bytes than
requested. For example, by default, a read() from a terminal reads characters only
up to the next newline (\n) character. We consider these cases when we cover other
file types in subsequent chapters.

Using read() to input a series of characters from, say, a terminal, we might
expect the following code to work:

#define MAX_READ 20
char buffer[MAX_READ];

if (read(STDIN_FILENO, buffer, MAX_READ) == -1)
 errExit("read");
printf("The input data was: %s\n", buffer);

The output from this piece of code is likely to be strange, since it will probably
include characters in addition to the string actually entered. This is because read()

#include <unistd.h>

ssize_t read(int fd, void *buffer, size_t count);

Returns number of bytes read, 0 on EOF, or –1 on error

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

80 Chapter 4

doesn’t place a terminating null byte at the end of the string that printf() is being
asked to print. A moment’s reflection leads us to realize that this must be so, since
read() can be used to read any sequence of bytes from a file. In some cases, this
input might be text, but in other cases, the input might be binary integers or C
structures in binary form. There is no way for read() to tell the difference, and so it
can’t attend to the C convention of null terminating character strings. If a terminating
null byte is required at the end of the input buffer, we must put it there explicitly:

char buffer[MAX_READ + 1];
ssize_t numRead;

numRead = read(STDIN_FILENO, buffer, MAX_READ);
if (numRead == -1)

 errExit("read");

buffer[numRead] = '\0';
printf("The input data was: %s\n", buffer);

Because the terminating null byte requires a byte of memory, the size of buffer must
be at least one greater than the largest string we expect to read.

4.5 Writing to a File: write()

The write() system call writes data to an open file.

The arguments to write() are similar to those for read(): buffer is the address of the
data to be written; count is the number of bytes to write from buffer; and fd is a file
descriptor referring to the file to which data is to be written.

On success, write() returns the number of bytes actually written; this may be
less than count. For a disk file, possible reasons for such a partial write are that the
disk was filled or that the process resource limit on file sizes was reached. (The rele-
vant limit is RLIMIT_FSIZE, described in Section 36.3.)

When performing I/O on a disk file, a successful return from write() doesn’t
guarantee that the data has been transferred to disk, because the kernel performs
buffering of disk I/O in order to reduce disk activity and expedite write() calls. We
consider the details in Chapter 13.

4.6 Closing a File: close()

The close() system call closes an open file descriptor, freeing it for subsequent reuse
by the process. When a process terminates, all of its open file descriptors are auto-
matically closed.

#include <unistd.h>

ssize_t write(int fd, const void *buffer, size_t count);

Returns number of bytes written, or –1 on error

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Kat
Sticky Note
Marked set by Kat

Fi le I/O: The Universa l I/O Model 81

It is usually good practice to close unneeded file descriptors explicitly, since this
makes our code more readable and reliable in the face of subsequent modifica-
tions. Furthermore, file descriptors are a consumable resource, so failure to close a
file descriptor could result in a process running out of descriptors. This is a partic-
ularly important issue when writing long-lived programs that deal with multiple
files, such as shells or network servers.

Just like every other system call, a call to close() should be bracketed with error-
checking code, such as the following:

if (close(fd) == -1)
 errExit("close");

This catches errors such as attempting to close an unopened file descriptor or close
the same file descriptor twice, and catches error conditions that a specific file sys-
tem may diagnose during a close operation.

NFS (Network File System) provides an example of an error that is specific to a
file system. If an NFS commit failure occurs, meaning that the data did not
reach the remote disk, then this error is propagated to the application as a fail-
ure in the close() call.

4.7 Changing the File Offset: lseek()

For each open file, the kernel records a file offset, sometimes also called the read-
write offset or pointer. This is the location in the file at which the next read() or write()
will commence. The file offset is expressed as an ordinal byte position relative to
the start of the file. The first byte of the file is at offset 0.

The file offset is set to point to the start of the file when the file is opened and
is automatically adjusted by each subsequent call to read() or write() so that it points
to the next byte of the file after the byte(s) just read or written. Thus, successive
read() and write() calls progress sequentially through a file.

The lseek() system call adjusts the file offset of the open file referred to by the
file descriptor fd, according to the values specified in offset and whence.

#include <unistd.h>

int close(int fd);

Returns 0 on success, or –1 on error

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

Returns new file offset if successful, or –1 on error

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

82 Chapter 4

The offset argument specifies a value in bytes. (The off_t data type is a signed integer
type specified by SUSv3.) The whence argument indicates the base point from which
offset is to be interpreted, and is one of the following values:

SEEK_SET

The file offset is set offset bytes from the beginning of the file.

SEEK_CUR

The file offset is adjusted by offset bytes relative to the current file offset.

SEEK_END

The file offset is set to the size of the file plus offset. In other words, offset is
interpreted with respect to the next byte after the last byte of the file.

Figure 4-1 shows how the whence argument is interpreted.

In earlier UNIX implementations, the integers 0, 1, and 2 were used, rather
than the SEEK_* constants shown in the main text. Older versions of BSD used
different names for these values: L_SET, L_INCR, and L_XTND.

Figure 4-1: Interpreting the whence argument of lseek()

If whence is SEEK_CUR or SEEK_END, offset may be negative or positive; for SEEK_SET, offset
must be nonnegative.

The return value from a successful lseek() is the new file offset. The following
call retrieves the current location of the file offset without changing it:

curr = lseek(fd, 0, SEEK_CUR);

Some UNIX implementations (but not Linux) have the nonstandard tell(fd)
function, which serves the same purpose as the above lseek() call.

Here are some other examples of lseek() calls, along with comments indicating
where the file offset is moved to:

lseek(fd, 0, SEEK_SET); /* Start of file */
lseek(fd, 0, SEEK_END); /* Next byte after the end of the file */
lseek(fd, -1, SEEK_END); /* Last byte of file */
lseek(fd, -10, SEEK_CUR); /* Ten bytes prior to current location */
lseek(fd, 10000, SEEK_END); /* 10001 bytes past last byte of file */

Calling lseek() simply adjusts the kernel’s record of the file offset associated with a
file descriptor. It does not cause any physical device access.

We describe some further details of the relationship between file offsets, file
descriptors, and open files in Section 5.4.

whence value

Current
file offset

byte
number

SEEK_SET SEEK_CUR SEEK_END

N–1N–20 1 N N+1 . . .

Unwritten bytes
past EOF

File containing
N bytes of data

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 83

We can’t apply lseek() to all types of files. Applying lseek() to a pipe, FIFO,
socket, or terminal is not permitted; lseek() fails, with errno set to ESPIPE. On the
other hand, it is possible to apply lseek() to devices where it is sensible to do so. For
example, it is possible to seek to a specified location on a disk or tape device.

The l in the name lseek() derives from the fact that the offset argument and the
return value were both originally typed as long. Early UNIX implementations
provided a seek() system call, which typed these values as int.

File holes

What happens if a program seeks past the end of a file, and then performs I/O? A
call to read() will return 0, indicating end-of-file. Somewhat surprisingly, it is possible
to write bytes at an arbitrary point past the end of the file.

The space in between the previous end of the file and the newly written bytes is
referred to as a file hole. From a programming point of view, the bytes in a hole
exist, and reading from the hole returns a buffer of bytes containing 0 (null bytes).

File holes don’t, however, take up any disk space. The file system doesn’t allo-
cate any disk blocks for a hole until, at some later point, data is written into it. The
main advantage of file holes is that a sparsely populated file consumes less disk
space than would otherwise be required if the null bytes actually needed to be allo-
cated in disk blocks. Core dump files (Section 22.1) are common examples of files
that contain large holes.

The statement that file holes don’t consume disk space needs to be qualified
slightly. On most file systems, file space is allocated in units of blocks (Sec-
tion 14.3). The size of a block depends on the file system, but is typically
something like 1024, 2048, or 4096 bytes. If the edge of a hole falls within a
block, rather than on a block boundary, then a complete block is allocated to
store the data in the other part of the block, and the part corresponding to
the hole is filled with null bytes.

Most native UNIX file systems support the concept of file holes, but many nonna-
tive file systems (e.g., Microsoft’s VFAT) do not. On a file system that doesn’t sup-
port holes, explicit null bytes are written to the file.

The existence of holes means that a file’s nominal size may be larger than the
amount of disk storage it utilizes (in some cases, considerably larger). Writing bytes
into the middle of the file hole will decrease the amount of free disk space as the
kernel allocates blocks to fill the hole, even though the file’s size doesn’t change.
Such a scenario is uncommon, but nevertheless one to be aware of.

SUSv3 specifies a function, posix_fallocate(fd, offset, len), that ensures that space
is allocated on disk for the byte range specified by offset and len for the disk file
referred to by the descriptor fd. This allows an application to be sure that a
later write() to the file won’t fail because disk space is exhausted (which could
otherwise occur if a hole in the file was filled in, or some other application con-
sumed space on the disk before the full extent of the file was written). Histori-
cally, the glibc implementation of this function achieved the desired result by
writing a 0 byte into each block in the specified range. Since version 2.6.23,
Linux provides an fallocate() system call, which provides a more efficient way of
ensuring that the necessary space is allocated, and the glibc posix_fallocate()
implementation makes use of this system call when it is available.

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

84 Chapter 4

Section 14.4 describes how holes are represented in a file, and Section 15.1
describes the stat() system call, which can tell us the current size of a file, as well as
the number of blocks actually allocated to the file.

Example program

Listing 4-3 demonstrates the use of lseek() in conjunction with read() and write().
The first command-line argument to this program is the name of a file to be
opened. The remaining arguments specify I/O operations to be performed on the
file. Each of these operations consists of a letter followed by an associated value
(with no separating space):

 soffset: Seek to byte offset from the start of the file.

 rlength: Read length bytes from the file, starting at the current file offset, and
display them in text form.

 Rlength: Read length bytes from the file, starting at the current file offset, and
display them in hexadecimal.

 wstr: Write the string of characters specified in str at the current file offset.

Listing 4-3: Demonstration of read(), write(), and lseek()
 fileio/seek_io.c

#include <sys/stat.h>
#include <fcntl.h>
#include <ctype.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{

 size_t len;
 off_t offset;
 int fd, ap, j;
 unsigned char *buf;
 ssize_t numRead, numWritten;

 if (argc < 3 || strcmp(argv[1], "--help") == 0)
 usageErr("%s file {r<length>|R<length>|w<string>|s<offset>}...\n",

 argv[0]);

 fd = open(argv[1], O_RDWR | O_CREAT,
 S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
 S_IROTH | S_IWOTH); /* rw-rw-rw- */

 if (fd == -1)
 errExit("open");

 for (ap = 2; ap < argc; ap++) {
 switch (argv[ap][0]) {
 case 'r': /* Display bytes at current offset, as text */
 case 'R': /* Display bytes at current offset, in hex */

 len = getLong(&argv[ap][1], GN_ANY_BASE, argv[ap]);

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 85

 buf = malloc(len);
 if (buf == NULL)

 errExit("malloc");

 numRead = read(fd, buf, len);
 if (numRead == -1)

 errExit("read");

 if (numRead == 0) {
 printf("%s: end-of-file\n", argv[ap]);

 } else {
 printf("%s: ", argv[ap]);
 for (j = 0; j < numRead; j++) {
 if (argv[ap][0] == 'r')

 printf("%c", isprint(buf[j]) ? buf[j] : '?');
 else

 printf("%02x ", buf[j]);
 }
 printf("\n");

 }

 free(buf);
 break;

 case 'w': /* Write string at current offset */
 numWritten = write(fd, &argv[ap][1], strlen(&argv[ap][1]));
 if (numWritten == -1)

 errExit("write");
 printf("%s: wrote %ld bytes\n", argv[ap], (long) numWritten);
 break;

 case 's': /* Change file offset */
 offset = getLong(&argv[ap][1], GN_ANY_BASE, argv[ap]);
 if (lseek(fd, offset, SEEK_SET) == -1)

 errExit("lseek");
 printf("%s: seek succeeded\n", argv[ap]);
 break;

 default:
 cmdLineErr("Argument must start with [rRws]: %s\n", argv[ap]);

 }
 }

 exit(EXIT_SUCCESS);
}

 fileio/seek_io.c

The following shell session log demonstrates the use of the program in Listing 4-3,
showing what happens when we attempt to read bytes from a file hole:

$ touch tfile Create new, empty file
$./seek_io tfile s100000 wabc Seek to offset 100,000, write “abc”
s100000: seek succeeded
wabc: wrote 3 bytes

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

86 Chapter 4

$ ls -l tfile Check size of file
-rw-r--r-- 1 mtk users 100003 Feb 10 10:35 tfile
$./seek_io tfile s10000 R5 Seek to offset 10,000, read 5 bytes from hole
s10000: seek succeeded
R5: 00 00 00 00 00 Bytes in the hole contain 0

4.8 Operations Outside the Universal I/O Model: ioctl()

The ioctl() system call is a general-purpose mechanism for performing file and
device operations that fall outside the universal I/O model described earlier in this
chapter.

The fd argument is an open file descriptor for the device or file upon which the
control operation specified by request is to be performed. Device-specific header
files define constants that can be passed in the request argument.

As indicated by the standard C ellipsis (...) notation, the third argument to
ioctl(), which we label argp, can be of any type. The value of the request argument
enables ioctl() to determine what type of value to expect in argp. Typically, argp is a
pointer to either an integer or a structure; in some cases, it is unused.

We’ll see a number of uses for ioctl() in later chapters (see, for example,
Section 15.5).

The only specification that SUSv3 makes for ioctl() is for operations to control
STREAMS devices. (The STREAMS facility is a System V feature that is not
supported by the mainline Linux kernel, although a few add-on implementa-
tions have been developed.) None of the other ioctl() operations described in
this book is specified in SUSv3. However, the ioctl() call has been part of the
UNIX system since early versions, and consequently several of the ioctl() opera-
tions that we describe are provided on many other UNIX implementations. As
we describe each ioctl() operation, we note portability issues.

4.9 Summary

In order to perform I/O on a regular file, we must first obtain a file descriptor
using open(). I/O is then performed using read() and write(). After performing all
I/O, we should free the file descriptor and its associated resources using close().
These system calls can be used to perform I/O on all types of files.

The fact that all file types and device drivers implement the same I/O interface
allows for universality of I/O, meaning that a program can typically be used with
any type of file without requiring code that is specific to the file type.

#include <sys/ioctl.h>

int ioctl(int fd, int request, ... /* argp */);

Value returned on success depends on request, or –1 on error

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

Fi le I/O: The Universa l I/O Model 87

For each open file, the kernel maintains a file offset, which determines the
location at which the next read or write will occur. The file offset is implicitly
updated by reads and writes. Using lseek(), we can explicitly reposition the file offset
to any location within the file or past the end of the file. Writing data at a position
beyond the previous end of the file creates a hole in the file. Reads from a file hole
return bytes containing zeros.

The ioctl() system call is a catchall for device and file operations that don’t fit
into the standard file I/O model.

4.10 Exercises

4-1. The tee command reads its standard input until end-of-file, writing a copy of the input
to standard output and to the file named in its command-line argument. (We show
an example of the use of this command when we discuss FIFOs in Section 44.7.)
Implement tee using I/O system calls. By default, tee overwrites any existing file with
the given name. Implement the –a command-line option (tee –a file), which causes tee
to append text to the end of a file if it already exists. (Refer to Appendix B for a
description of the getopt() function, which can be used to parse command-line
options.)

4-2. Write a program like cp that, when used to copy a regular file that contains holes
(sequences of null bytes), also creates corresponding holes in the target file.

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi

