PREFACE

Subject

In this book, I describe the Linux programming interface—the system calls, library
functions, and other low-level interfaces provided by Linux, a free implementation
of the UNIX operating system. These interfaces are used, directly or indirectly, by
every program that runs on Linux. They allow applications to perform tasks such as
file I/O, creating and deleting files and directories, creating new processes, executing
programs, setting timers, communicating between processes and threads on the
same computer, and communicating between processes residing on different
computers connected via a network. This set of low-level interfaces is sometimes
also known as the system programming interface.

Although I focus on Linux, I give careful attention to standards and portability
issues, and clearly distinguish the discussion of Linux-specific details from the dis-
cussion of features that are common to most UNIX implementations and standardized
by POSIX and the Single UNIX Specification. Thus, this book also provides a com-
prehensive description of the UNIX/POSIX programming interface and can be
used by programmers writing applications targeted at other UNIX systems or
intended to be portable across multiple systems.
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Intended audience

This book is aimed primarily at the following audience:

e programmers and software designers building applications for Linux, other
UNIX systems, or other POSIX-conformant systems;

e programmers porting applications between Linux and other UNIX implemen-
tations or between Linux and other operating systems;

e instructors and advanced students teaching or learning Linux or UNIX system
programming; and

e system managers and “power users” wishing to gain a greater understanding of
the Linux/UNIX programming interface and of how various pieces of system
software are implemented.

I assume you have some prior programming experience, but no previous system
programming experience is required. I also assume you have a reading knowledge
of the C programming language, and know how to use the shell and common Linux
or UNIX commands. If you are new to Linux or UNIX, you will find it helpful to
read the programmer-oriented review of fundamental concepts of Linux and UNIX
systems in Chapter 2.

The standard tutorial reference for C is [Kernighan & Ritchie, 1988]. [Harbison
& Steele, 2002] goes into even more detail on C, and includes coverage of
changes introduced with the C99 standard. [van der Linden, 1994] is an alter-
native look at C that is both highly amusing and instructive. [Peek et al., 2001]
provides a good, brief introduction to using a UNIX system.

Throughout this book, indented small-font paragraphs like these are used
for asides containing rationale, implementation details, background informa-
tion, historical notes, and other topics that are ancillary to the main text.

Linux and UNIX

This book could have been purely about standard UNIX (that is, POSIX) system
programming because most features found on other UNIX implementations are
also present on Linux and vice versa. However, while writing portable applications
is a worthy goal, it is also important to describe Linux extensions to the standard
UNIX programming interface. One reason for this is the popularity of Linux.
Another is that the use of nonstandard extensions is sometimes essential, either for
performance reasons or to access functionality that is unavailable in the standard
UNIX programming interface. (All UNIX implementations provide nonstandard
extensions for these reasons.)

Therefore, while I've designed this book to be useful to programmers working
with all UNIX implementations, I also provide full coverage of programming fea-
tures that are specific to Linux. These features include:

e ¢poll, a mechanism for obtaining notification of file I/O events;

e inotify, a mechanism for monitoring changes in files and directories;

e capabilities, a mechanism for granting a process a subset of the powers of the
superuser;
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extended attributes;
i-node flags;

the clone() system call;
the /proc file system; and

Linux-specific details of the implementation of file 1/0, signals, timers,
threads, shared libraries, interprocess communication, and sockets.

Usage and organization

You can use this book in at least two ways:

As a tutorial introduction to the Linux/UNIX programming interface. You can
read the book linearly. Later chapters build on material presented in earlier
chapters, with forward references minimized as far as possible.

As a comprehensive reference to the Linux/UNIX programming interface. An
extensive index and frequent cross-references allow topics to be read in ran-
dom order.

I've grouped the chapters of this book into the following parts:

1.

Background and concepts: history of UNIX, C, and Linux and overview of UNIX
standards (Chapter 1); a programmer-oriented introduction to Linux and
UNIX concepts (Chapter 2); and fundamental concepts for system program-
ming on Linux and UNIX (Chapter 3).

Fundamental features of the system programming interface: file 1/O (Chapter 4 and
Chapter 5); processes (Chapter 6); memory allocation (Chapter 7); users and
groups (Chapter 8); process credentials (Chapter 9); time (Chapter 10); system
limits and options (Chapter 11); and retrieving system and process information
(Chapter 12).

More advanced features of the system programming interface: file 1/O buffering
(Chapter 13); file systems (Chapter 14); file attributes (Chapter 15); extended
attributes (Chapter 16); access control lists (Chapter 17); directories and links
(Chapter 18); monitoring file events (Chapter 19); signals (Chapter 20 to Chap-
ter 22); and timers (Chapter 23).

Processes, programs, and threads: process creation, process termination, monitor-
ing child processes, and executing programs (Chapter 24 to Chapter 28); and
POSIX threads (Chapter 29 to Chapter 33).

Advanced process and program topics: process groups, sessions, and job control
(Chapter 34); process priorities and scheduling (Chapter 35); process
resources (Chapter 36); daemons (Chapter 37); writing secure privileged pro-
grams (Chapter 38); capabilities (Chapter 39); login accounting (Chapter 40);
and shared libraries (Chapter 41 and Chapter 42).

Interprocess communication (IPC): IPC overview (Chapter 43); pipes and FIFOs
(Chapter 44); System V IPC—message queues, semaphores, and shared mem-
ory (Chapter 45 to Chapter 48); memory mappings (Chapter 49); virtual memory
operations (Chapter 50); POSIX IPC—message queues, semaphores, and shared
memory (Chapter 51 to Chapter 54); and file locking (Chapter 55).
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7. Sockets and network programming: IPC and network programming with sockets
(Chapter 56 to Chapter 61).

8. Advanced 1/0O topics: terminals (Chapter 62); alternative I/O models (Chapter 63);
and pseudoterminals (Chapter 64).

Example programs

I illustrate the use of most of the interfaces described in this book with short, complete
programs, many of which are designed to allow you to easily experiment from the
command line to see just how various system calls and library functions work.
Consequently, this book contains a lot of example code—around 15,000 lines of C
source code and shell session logs.

Although reading and experimenting with the example programs is a useful
starting point, the most effective way to consolidate the concepts discussed in this
book is to write code, either modifying the example programs to try out your own
ideas or writing new programs.

All of the source code in this book is available for download from the book’s
web site. The source code distribution also includes many additional programs that
don’t appear in the book. The purpose and details of these programs are described
in comments in the source code. Makefiles are provided for building the programs,
and an accompanying README file gives further details about the programs.

The source code is freely redistributable and modifiable under the terms of the
GNU Affero General Public License (Affero GPL) version 3, a copy of which is pro-
vided in the source code distribution.

Exercises

Most chapters conclude with a set of exercises, some of which are suggestions for
various experiments using the provided example programs. Other exercises are
questions relating to concepts discussed in the chapter, and still others are suggestions
for programs you might write in order to consolidate your understanding of the
material. You’ll find solutions to selected exercises in Appendix F.

Standards and portability

Throughout this book, I've taken special care to consider portability issues. You'll
find frequent references to relevant standards, especially the combined POSIX.1-2001
and Single UNIX Specification version 3 (SUSv3) standard. You’ll also find details
about changes in the recent revision of that standard, the combined POSIX.1-2008
and SUSv4 standard. (Because SUSv3 was a much larger revision, and it is the
UNIX standard that is in most widespread effect at the time of writing, discussions of
standards in the book are generally framed in terms of SUSv3, with notes on the dif-
ferences in SUSv4. However, you can assume that, except where noted, statements
about specifications in SUSv3 also hold true in SUSv4.)

For features that are not standardized, I indicate the range of differences on
other UNIX implementations. I also highlight those major features of Linux that
are implementation-specific, as well as minor differences between the implementa-
tion of system calls and library functions on Linux and other UNIX implementations.
Where a feature is not indicated as being Linux-specific, you can normally assume
that it is a standard feature that appears on most or all UNIX implementations.
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I've tested most of the example programs presented in this book (other than
those that exploit features that are noted as being Linux-specific) on some or all of
Solaris, FreeBSD, Mac OS X, Tru64 UNIX, and HP-UX. To improve portability to
some of these systems, the web site for this book provides alternative versions of
certain example programs with extra code that doesn’t appear in the book.

Linux kernel and C library versions

The primary focus of this book is on Linux 2.6.x, the kernel version in widest use at the
time of writing. Details for Linux 2.4 are also covered, and I've indicated where
features differ between Linux 2.4 and 2.6. Where new features appear in the Linux
2.6.x series, the exact kernel version number of their appearance (e.g., 2.6.34) is noted.

With respect to the C library, the main focus is on the GNU C library (glibc)
version 2. Where relevant, differences across glibc 2.x versions are noted.

As this book was heading to press, Linux kernel version 2.6.35 had just been
released, and glibe version 2.12 had been recently released. This book is current
with respect to both of these software versions. Changes that occur in the Linux
and glibc interfaces after publication of this book will be noted on the book’s
web site.

Using the programming interface from other languages

Although the example programs are written in C, you can use the interfaces described
in this book from other programming languages—for example, compiled languages
such as C++, Pascal, Modula, Ada, FORTRAN, D, and scripting languages such as
Perl, Python, and Ruby. (Java requires a different approach; see, for example,
[Rochkind, 2004].) Different techniques will be required to obtain the necessary
constant definitions and function declarations (except in the case of C++), and some
extra work may be needed to pass function arguments in the manner required by C
linkage conventions. Notwithstanding these differences, the essential concepts are
the same, and you’ll find the information in this book is applicable even if you are
working in another programming language.

About the author

I started using UNIX and C in 1987, when I spent several weeks sitting in front of an
HP Bobcat workstation with a copy of the first edition of Marc Rochkind’s Advanced
UNIX Programming and what ultimately became a very dog-eared printed copy of
the C shell manual page. My approach then was one that I still try to follow today,
and that I recommend to anyone approaching a new software technology: take the
time to read the documentation (if it exists) and write small (but increasingly large)
test programs until you become confident of your understanding of the software.
I've found that, in the long run, this kind of self-training more than pays for itself in
terms of saved time. Many of the programming examples in this book are constructed
in ways that encourage this learning approach.

I’'ve primarily been a software engineer and designer. However, I'm also a passion-
ate teacher, and have spent several years teaching in both academic and commercial
environments. I've run many week-long courses teaching UNIX system programming,
and that experience informs the writing of this book.
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I've been using Linux for about half as long as I've been using UNIX, and, over
that time, my interest has increasingly centered on the boundary between the kernel
and user space: the Linux programming interface. This interest has drawn me into
a number of interrelated activities. I intermittently provide input and bug reports
for the POSIX/SUS standard; I carry out tests and design reviews of new user-space
interfaces added to the Linux kernel (and have helped find and fix many code and
design bugs in those interfaces); I've been a regular speaker at conferences on topics
related to interfaces and their documentation; and I've been invited on a number
of occasions to the annual Linux Kernel Developers Summit. The common thread
tying all of these activities together is my most visible contribution in the Linux
world: my work on the man-pages project (http.//www.kernel.org/doc/man-pages/).

The man-pages project provides pages in sections 2, 3, 4, 5, and 7 of the Linux
manual pages. These are the manual pages describing the programming interfaces
provided by the Linux kernel and the GNU C library—the same topic area as this
book. I've been involved with man-pages for more than a decade. Since 2004, I've
been the project maintainer, a task that involves, in roughly equal measure, writing
documentation, reading kernel and library source code, and writing programs to
verify the details for documentation. (Documenting an interface is a great way to
find bugs in that interface.) I've also been the biggest contributor to man-pages—of
the approximately 900 pages in man-pages, I am the author of 140, and the coauthor
of another 125. So, even before you picked up this book, it’s quite likely you've
read some of my published work. I hope that you’ve found that work useful, and
that you’ll find this book even more so.
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