PREFACE

Subject

In this book, I describe the Linux programming interface—the system calls, library
functions, and other low-level interfaces provided by Linux, a free implementation
of the UNIX operating system. These interfaces are used, directly or indirectly, by
every program that runs on Linux. They allow applications to perform tasks such as
file I/O, creating and deleting files and directories, creating new processes, executing
programs, setting timers, communicating between processes and threads on the
same computer, and communicating between processes residing on different
computers connected via a network. This set of low-level interfaces is sometimes
also known as the system programming interface.

Although I focus on Linux, I give careful attention to standards and portability
issues, and clearly distinguish the discussion of Linux-specific details from the dis-
cussion of features that are common to most UNIX implementations and standardized
by POSIX and the Single UNIX Specification. Thus, this book also provides a com-
prehensive description of the UNIX/POSIX programming interface and can be
used by programmers writing applications targeted at other UNIX systems or
intended to be portable across multiple systems.



XXxii

Intended audience

This book is aimed primarily at the following audience:

e programmers and software designers building applications for Linux, other
UNIX systems, or other POSIX-conformant systems;

e programmers porting applications between Linux and other UNIX implemen-
tations or between Linux and other operating systems;

e instructors and advanced students teaching or learning Linux or UNIX system
programming; and

e system managers and “power users” wishing to gain a greater understanding of
the Linux/UNIX programming interface and of how various pieces of system
software are implemented.

I assume you have some prior programming experience, but no previous system
programming experience is required. I also assume you have a reading knowledge
of the C programming language, and know how to use the shell and common Linux
or UNIX commands. If you are new to Linux or UNIX, you will find it helpful to
read the programmer-oriented review of fundamental concepts of Linux and UNIX
systems in Chapter 2.

The standard tutorial reference for C is [Kernighan & Ritchie, 1988]. [Harbison
& Steele, 2002] goes into even more detail on C, and includes coverage of
changes introduced with the C99 standard. [van der Linden, 1994] is an alter-
native look at C that is both highly amusing and instructive. [Peek et al., 2001]
provides a good, brief introduction to using a UNIX system.

Throughout this book, indented small-font paragraphs like these are used
for asides containing rationale, implementation details, background informa-
tion, historical notes, and other topics that are ancillary to the main text.

Linux and UNIX

This book could have been purely about standard UNIX (that is, POSIX) system
programming because most features found on other UNIX implementations are
also present on Linux and vice versa. However, while writing portable applications
is a worthy goal, it is also important to describe Linux extensions to the standard
UNIX programming interface. One reason for this is the popularity of Linux.
Another is that the use of nonstandard extensions is sometimes essential, either for
performance reasons or to access functionality that is unavailable in the standard
UNIX programming interface. (All UNIX implementations provide nonstandard
extensions for these reasons.)

Therefore, while I've designed this book to be useful to programmers working
with all UNIX implementations, I also provide full coverage of programming fea-
tures that are specific to Linux. These features include:

e ¢poll, a mechanism for obtaining notification of file I/O events;

e inotify, a mechanism for monitoring changes in files and directories;

e capabilities, a mechanism for granting a process a subset of the powers of the
superuser;

Preface



extended attributes;
i-node flags;

the clone() system call;
the /proc file system; and

Linux-specific details of the implementation of file 1/0, signals, timers,
threads, shared libraries, interprocess communication, and sockets.

Usage and organization

You can use this book in at least two ways:

As a tutorial introduction to the Linux/UNIX programming interface. You can
read the book linearly. Later chapters build on material presented in earlier
chapters, with forward references minimized as far as possible.

As a comprehensive reference to the Linux/UNIX programming interface. An
extensive index and frequent cross-references allow topics to be read in ran-
dom order.

I've grouped the chapters of this book into the following parts:

1.

Background and concepts: history of UNIX, C, and Linux and overview of UNIX
standards (Chapter 1); a programmer-oriented introduction to Linux and
UNIX concepts (Chapter 2); and fundamental concepts for system program-
ming on Linux and UNIX (Chapter 3).

Fundamental features of the system programming interface: file 1/O (Chapter 4 and
Chapter 5); processes (Chapter 6); memory allocation (Chapter 7); users and
groups (Chapter 8); process credentials (Chapter 9); time (Chapter 10); system
limits and options (Chapter 11); and retrieving system and process information
(Chapter 12).

More advanced features of the system programming interface: file 1/O buffering
(Chapter 13); file systems (Chapter 14); file attributes (Chapter 15); extended
attributes (Chapter 16); access control lists (Chapter 17); directories and links
(Chapter 18); monitoring file events (Chapter 19); signals (Chapter 20 to Chap-
ter 22); and timers (Chapter 23).

Processes, programs, and threads: process creation, process termination, monitor-
ing child processes, and executing programs (Chapter 24 to Chapter 28); and
POSIX threads (Chapter 29 to Chapter 33).

Advanced process and program topics: process groups, sessions, and job control
(Chapter 34); process priorities and scheduling (Chapter 35); process
resources (Chapter 36); daemons (Chapter 37); writing secure privileged pro-
grams (Chapter 38); capabilities (Chapter 39); login accounting (Chapter 40);
and shared libraries (Chapter 41 and Chapter 42).

Interprocess communication (IPC): IPC overview (Chapter 43); pipes and FIFOs
(Chapter 44); System V IPC—message queues, semaphores, and shared mem-
ory (Chapter 45 to Chapter 48); memory mappings (Chapter 49); virtual memory
operations (Chapter 50); POSIX IPC—message queues, semaphores, and shared
memory (Chapter 51 to Chapter 54); and file locking (Chapter 55).

Preface Xxxiii



XXXiv

7. Sockets and network programming: IPC and network programming with sockets
(Chapter 56 to Chapter 61).

8. Advanced 1/0O topics: terminals (Chapter 62); alternative I/O models (Chapter 63);
and pseudoterminals (Chapter 64).

Example programs

I illustrate the use of most of the interfaces described in this book with short, complete
programs, many of which are designed to allow you to easily experiment from the
command line to see just how various system calls and library functions work.
Consequently, this book contains a lot of example code—around 15,000 lines of C
source code and shell session logs.

Although reading and experimenting with the example programs is a useful
starting point, the most effective way to consolidate the concepts discussed in this
book is to write code, either modifying the example programs to try out your own
ideas or writing new programs.

All of the source code in this book is available for download from the book’s
web site. The source code distribution also includes many additional programs that
don’t appear in the book. The purpose and details of these programs are described
in comments in the source code. Makefiles are provided for building the programs,
and an accompanying README file gives further details about the programs.

The source code is freely redistributable and modifiable under the terms of the
GNU Affero General Public License (Affero GPL) version 3, a copy of which is pro-
vided in the source code distribution.

Exercises

Most chapters conclude with a set of exercises, some of which are suggestions for
various experiments using the provided example programs. Other exercises are
questions relating to concepts discussed in the chapter, and still others are suggestions
for programs you might write in order to consolidate your understanding of the
material. You’ll find solutions to selected exercises in Appendix F.

Standards and portability

Throughout this book, I've taken special care to consider portability issues. You'll
find frequent references to relevant standards, especially the combined POSIX.1-2001
and Single UNIX Specification version 3 (SUSv3) standard. You’ll also find details
about changes in the recent revision of that standard, the combined POSIX.1-2008
and SUSv4 standard. (Because SUSv3 was a much larger revision, and it is the
UNIX standard that is in most widespread effect at the time of writing, discussions of
standards in the book are generally framed in terms of SUSv3, with notes on the dif-
ferences in SUSv4. However, you can assume that, except where noted, statements
about specifications in SUSv3 also hold true in SUSv4.)

For features that are not standardized, I indicate the range of differences on
other UNIX implementations. I also highlight those major features of Linux that
are implementation-specific, as well as minor differences between the implementa-
tion of system calls and library functions on Linux and other UNIX implementations.
Where a feature is not indicated as being Linux-specific, you can normally assume
that it is a standard feature that appears on most or all UNIX implementations.

Preface



I've tested most of the example programs presented in this book (other than
those that exploit features that are noted as being Linux-specific) on some or all of
Solaris, FreeBSD, Mac OS X, Tru64 UNIX, and HP-UX. To improve portability to
some of these systems, the web site for this book provides alternative versions of
certain example programs with extra code that doesn’t appear in the book.

Linux kernel and C library versions

The primary focus of this book is on Linux 2.6.x, the kernel version in widest use at the
time of writing. Details for Linux 2.4 are also covered, and I've indicated where
features differ between Linux 2.4 and 2.6. Where new features appear in the Linux
2.6.x series, the exact kernel version number of their appearance (e.g., 2.6.34) is noted.

With respect to the C library, the main focus is on the GNU C library (glibc)
version 2. Where relevant, differences across glibc 2.x versions are noted.

As this book was heading to press, Linux kernel version 2.6.35 had just been
released, and glibe version 2.12 had been recently released. This book is current
with respect to both of these software versions. Changes that occur in the Linux
and glibc interfaces after publication of this book will be noted on the book’s
web site.

Using the programming interface from other languages

Although the example programs are written in C, you can use the interfaces described
in this book from other programming languages—for example, compiled languages
such as C++, Pascal, Modula, Ada, FORTRAN, D, and scripting languages such as
Perl, Python, and Ruby. (Java requires a different approach; see, for example,
[Rochkind, 2004].) Different techniques will be required to obtain the necessary
constant definitions and function declarations (except in the case of C++), and some
extra work may be needed to pass function arguments in the manner required by C
linkage conventions. Notwithstanding these differences, the essential concepts are
the same, and you’ll find the information in this book is applicable even if you are
working in another programming language.

About the author

I started using UNIX and C in 1987, when I spent several weeks sitting in front of an
HP Bobcat workstation with a copy of the first edition of Marc Rochkind’s Advanced
UNIX Programming and what ultimately became a very dog-eared printed copy of
the C shell manual page. My approach then was one that I still try to follow today,
and that I recommend to anyone approaching a new software technology: take the
time to read the documentation (if it exists) and write small (but increasingly large)
test programs until you become confident of your understanding of the software.
I've found that, in the long run, this kind of self-training more than pays for itself in
terms of saved time. Many of the programming examples in this book are constructed
in ways that encourage this learning approach.

I’'ve primarily been a software engineer and designer. However, I'm also a passion-
ate teacher, and have spent several years teaching in both academic and commercial
environments. I've run many week-long courses teaching UNIX system programming,
and that experience informs the writing of this book.

Preface XXXV



XXXVi

I've been using Linux for about half as long as I've been using UNIX, and, over
that time, my interest has increasingly centered on the boundary between the kernel
and user space: the Linux programming interface. This interest has drawn me into
a number of interrelated activities. I intermittently provide input and bug reports
for the POSIX/SUS standard; I carry out tests and design reviews of new user-space
interfaces added to the Linux kernel (and have helped find and fix many code and
design bugs in those interfaces); I've been a regular speaker at conferences on topics
related to interfaces and their documentation; and I've been invited on a number
of occasions to the annual Linux Kernel Developers Summit. The common thread
tying all of these activities together is my most visible contribution in the Linux
world: my work on the man-pages project (http.//www.kernel.org/doc/man-pages/).

The man-pages project provides pages in sections 2, 3, 4, 5, and 7 of the Linux
manual pages. These are the manual pages describing the programming interfaces
provided by the Linux kernel and the GNU C library—the same topic area as this
book. I've been involved with man-pages for more than a decade. Since 2004, I've
been the project maintainer, a task that involves, in roughly equal measure, writing
documentation, reading kernel and library source code, and writing programs to
verify the details for documentation. (Documenting an interface is a great way to
find bugs in that interface.) I've also been the biggest contributor to man-pages—of
the approximately 900 pages in man-pages, I am the author of 140, and the coauthor
of another 125. So, even before you picked up this book, it’s quite likely you've
read some of my published work. I hope that you’ve found that work useful, and
that you’ll find this book even more so.

Acknowledgements

Without the support of a good many people, this book would have been far less than
itis. It is a great pleasure to thank them.

Alarge team of technical reviewers around the world read drafts, found errors,
pointed out confusing explanations, suggested rewordings and diagrams, tested
programs, proposed exercises, identified aspects of the behavior of Linux and
other UNIX implementations that I was not aware of, and offered support and
encouragement. Many reviewers generously supplied insights and comments that I
was able to incorporate into the book, at times making me look more knowledge-
able than I am. Any mistakes that remain are, of course, my own.

Thanks especially to the following reviewers (listed alphabetically by surname),
who either commented on large sections of the manuscript, commented extensively
on smaller sections of the manuscript, or (magnificently) commented extensively on
large sections of the manuscript:

e Christophe Blaess is a consulting software engineer and professional trainer
who specializes in industrial (realtime and embedded) applications of Linux.
Christophe is the author of Programmation systéme en C sous Linux, a fine French
book covering many of the same topics as this book. He generously read and
commented on many chapters of my book.

e David Butenhof (Hewlett-Packard) was a member of the original working
group for POSIX threads and for the Single UNIX Specification threads exten-
sions, and is the author of Programming with POSIX Threads. He wrote the original
DCE Threads reference implementation for the Open Software Foundation,

Preface



and was lead architect of the threads implementation for OpenVMS and Digital
UNIX. David reviewed the threads chapters, suggested many improvements,
and patiently corrected several details of my understanding of the POSIX
threads APIL

Geoff Clare works at The Open Group on their UNIX conformance test suites,
has been involved with UNIX standardization for more than 20 years, and is
one of half a dozen key participants in the Austin Group, which develops the
joint standard that forms POSIX.1 and the base volumes of the Single UNIX
Specification. Geoff provided detailed review of parts of the manuscript
related to standard UNIX interfaces, patiently and politely suggested numerous
fixes and improvements, spotted many obscure bugs, and provided much assis-
tance in focusing on the importance of standards for portable programming.

Loic Domaigné (then at German Air Traffic Control) is a software systems
engineer working on the design and development of distributed, concurrent,
and fault-tolerant embedded systems with hard realtime requirements. He pro-
vided review input for the threads specification in SUSv3, and is an enthusiastic
educator and knowledgeable contributor in various online technical forums.
Loic carried out a detailed review of the threads chapters, as well as many other
parts of the book. He also implemented a number of clever programs to verify
details of the Linux threads implementation, provided a great deal of enthusiasm
and encouragement, and proposed numerous ideas to improve the overall
presentation of the material.

Gert Doring programmed mgetty and sendfax, a pair of programs that together
are one of the most widely used open source fax packages for UNIX and Linux.
These days, he works mainly on building and operating large IPv4-based and
IPv6-based networks, a task that includes working with colleagues across
Europe to define the operational policies that ensure the smooth operation of
the infrastructure of the Internet. Gert provided extensive and useful feedback
on the chapters covering terminals, login accounting, process groups, sessions,
and job control.

Wolfram Gloger is an IT consultant who has worked on a range of Free and
Open Source Software (FOSS) projects in the past decade and a half. Among
other things, Wolfram is the implementer of the malloc package used in the
GNU C library. Currently, he works on web services development, with a par-
ticular focus on E-learning, although he still does occasional work on the kernel
and system libraries. Wolfram reviewed a number of chapters, especially helping
with my discussion of memory-related topics.

Fernando Gont is a member of the Centro de Estudios de Informatica (CEDI)
at the Universidad Tecnologica Nacional, Argentina. He focuses on Internet
engineering, with active participation in the Internet Engineering Task Force
(IETF), where he has authored a number of Request for Comments (RFC) docu-
ments. Fernando also works on security assessment of communications protocols
for the UK Centre for the Protection of National Infrastructure (CPNI), and
has produced the first thorough security assessment of the TCP and IP protocols.
Fernando provided a very thorough review of the network programming
chapters, explained many details of TCP/IP, and suggested a multitude of
improvements to the material.

Preface XXXVii



XXXViii

Preface

Andreas Grinbacher (SUSE Labs) is a kernel hacker and author of the Linux
implementation of extended attributes and POSIX access control lists.
Andreas provided thorough review of many chapters, much encouragement,
and the single comment that probably most changed the structure of the book.

Christoph Hellwig is a Linux storage and file-systems consultant and a well-
known kernel hacker who has worked on many parts of the Linux kernel.
Christoph kindly took time out from writing and reviewing Linux kernel
patches to review several chapters of this book, suggesting many useful correc-
tions and improvements.

Andreas Jaeger led the development of the Linux port to the x86-64 architec-
ture. As a GNU C Library developer, he ported the library to x86-64, and
helped make the library standards-conformant in several areas, especially in
the math library. He is currently Program Manager for openSUSE at Novell.
Andreas reviewed far more chapters than I could possibly have hoped, sug-
gested a multitude of improvements, and warmly encouraged the ongoing
work on the book.

Rick Jones, also known as “Mr. Netperf” (Networked Systems Performance
Curmudgeon at Hewlett-Packard), provided valuable review of the network
programming chapters.

Andi Kleen (then at SUSE Labs) is a well-known and long-term kernel hacker
who has worked on many and diverse areas of the Linux kernel, including net-
working, error handling, scalability, and low-level architecture code. Andi did
an extensive review of the material on network programming, expanded my
knowledge of many details of the Linux TCP/IP implementation, and sug-
gested many ways to improve my presentation of the subject.

Martin Landers (Google) was still a student when I had the good fortune to meet
him as a colleague. Since then, he has managed to pack rather a lot into a short
time, having worked variously as software architect, I'T trainer, and profes-
sional hacker. I was fortunate indeed to have Martin as a reviewer. He contributed
numerous incisive comments and corrections that greatly improved many
chapters of the book.

Jamie Lokier is a well-known kernel hacker who has been contributing to Linux
development for 15 years. He nowadays describes himself as “a consultant in
solving difficult problems that often have embedded Linux somewhere.” Jamie
provided an extraordinarily thorough review of the chapters on memory map-
pings, POSIX shared memory, and virtual memory operations. His comments
corrected many details of my understanding of these topics and greatly
improved the structure of the chapters.

Barry Margolin has been a system programmer, system administrator, and support
engineer throughout his 25-year career. He is currently a Senior Performance
Engineer at Akamai Technologies. He is a frequent, well-respected contributor in
various online forums discussing UNIX and Internet topics, and has reviewed a
number of books on these topics. Barry reviewed a number of chapters of this
book, suggesting many improvements.



e Paul Pluzhnikov (Google) was formerly the technical lead and a key developer
of the Insure++ memory-debugging tool. He is also a sometime gdb hacker, and
a frequent responder in online forums answering questions on debugging,
memory allocation, shared libraries, and run-time environments. Paul reviewed a
wide range of chapters, suggesting many valuable improvements.

e John Reiser (with Tom London) carried out one of the earliest ports of UNIX
to a 32-bit architecture: the VAX-11/780. He is also the creator of the mmap()
system call. John reviewed many chapters (including, obviously, the chapter on
mmap()), providing a multitude of historical insights and crystal-clear technical
explanations that greatly improved the chapters.

e Anthony Robins (Associate Professor of Computer Science, University of
Otago, New Zealand), a close friend of more than three decades, was the first
reader of the drafts of several chapters, and offered valuable early comments
and ongoing encouragement as the project evolved.

e Michael Schréder (Novell) is one of the main authors of the GNU screen pro-
gram, a task that has imbued him with a thorough knowledge of the subtleties and
differences in terminal-driver implementations. Michael reviewed the chapters
covering terminals and pseudoterminals, and the chapter on process groups,
sessions, and job control, providing much useful feedback.

e Manfred Spraul, who worked on the IPC code (among other things) in the
Linux kernel, generously reviewed several of the chapters on IPC and sug-
gested many improvements.

e Tom Swigg, a former UNIX training colleague at Digital, was an early reviewer
who supplied important feedback on several chapters. A software engineer and
IT trainer for more than 25 years, Tom currently works at London South Bank
University, programming and supporting Linux in a VMware environment.

e Jens Thoms Torring is part of a fine tradition of physicists turned programmers,
and has produced a variety of open source device drivers and other software.
Jens read a surprisingly diverse collection of chapters, providing unique and
valuable insight on how each could be improved.

Many other technical reviewers also read various parts of the book and made valuable
comments. In alphabetical order by surname, thank you to George Anzinger
(MontaVista Software), Stefan Becher, Krzysztof Benedyczak, Daniel Brahneborg,
Andries Brouwer, Annabel Church, Dragan Cvetkovic, Floyd L. Davidson, Stuart
Davidson (Hewlett-Packard Consulting), Kasper Dupont, Peter Fellinger (jambit
GmbH), Mel Gorman (IBM), Niels Goéllesch, Claus Gratzl, Serge Hallyn (IBM),
Markus Hartinger (jambit GmbH), Richard Henderson (Red Hat), Andrew Josey
(The Open Group), Dan Kegel (Google), Davide Libenzi, Robert Love (Google),
H.J. Lu (Intel Corporation), Paul Marshall, Chris Mason, Michael Matz (SUSE),
Trond Myklebust, James Peach, Mark Phillips (Automated Test Systems), Nick Piggin
(SUSE Labs, Novell), Kay Johannes Potthoff, Florian Rampp, Stephen Rothwell (Linux
Technology Centre, IBM), Markus Schwaiger, Stephen Tweedie (Red Hat), Britta
Vargas, Chris Wright, Michal Wronski, and Umberto Zamuner.

Preface XXXiX



x|

Preface

Aside from technical review, I received many other kinds of help from various
people and organizations.

Thanks to the following people for answering technical questions: Jan Kara,
Dave Kleikamp, and Jon Snader. Thanks to Claus Gratzl and Paul Marshall for system
management assistance.

Thanks to the Linux Foundation (LF), which, during 2008, funded me as a Fellow
to work full time on the man-pages project and on testing and design review of the
Linux programming interface. Although the Fellowship provided no direct finan-
cial support for working on this book, it did keep me and my family fed, and the
ability to focus full time on documenting and testing the Linux programming interface
was a boon to my “private” project. At a more individual level, thanks to Jim Zemlin
for being my “interface” while working at the LF, and to the members of the LF
Technical Advisory Board, who supported my application for the Fellowship.

Thanks to Alejandro Forero Cuervo for suggesting the title of the book!

More than 25 years ago, Robert Biddle intrigued me during my first degree
with tales of UNIX, C, and Ratfor; thank you. Thanks to the following people, who,
although not directly connected with this project, encouraged me on the path of
writing during my second degree at the University of Canterbury, New Zealand:
Michael Howard, Jonathan Mane-Wheoki, Ken Strongman, Garth Fletcher, Jim
Pollard, and Brian Haig.

The late Richard Stevens wrote several superb books on UNIX programming
and TCP/IP, which I, like a multitude of programmers, have found to be a wonder-
ful source of technical information over the years. Readers of those books will note
several visual aspects that are similar between my book and those of Richard Stevens.
This is no accident. As I considered how to design my book, and looked around
more generally at book designs, time and again, the approach employed by Richard
Stevens seemed the best solution, and where this was so, I have employed the same
visual approach.

Thanks to the following people and organizations for providing UNIX systems
that enabled me to run test programs and verify details on other UNIX implemen-
tations: Anthony Robins and Cathy Chandra, for test systems at the University of
Otago, New Zealand; Martin Landers, Ralf Ebner, and Klaus Tilk, for test systems
at the Technische Universitit in Munich, Germany; Hewlett-Packard, for making
their testdrive systems freely available on the Internet; and Paul de Weerd for pro-
viding OpenBSD access.

Heartfelt thanks to two Munich companies, and their owners, who, in addition
to providing me with flexible employment and enjoyable colleagues, were extraor-
dinarily generous in allowing me to use their offices while writing this book.
Thanks to Thomas Kahabka and Thomas Gmelch of exolution GmbH, and, espe-
cially, to Peter Fellinger and Markus Hartinger of jambit GmbH.

Thanks for various kinds of help to the following people: Dan Randow, Karen
Korrel, Claudio Scalmazzi, Michael Schiipbach, and Liz Wright. Thanks to Rob
Suisted and Lynley Cook for the photographs used on the front and back covers.

Thanks to the following people who encouraged and supported me in various
ways on this project: Deborah Church, Doris Church, and Annie Currie.



Thanks to the team at No Starch Press for all sorts of help on an enormous
project. Thanks to Bill Pollock for being straight-talking from the start, having rock-
solid faith in the project, and patiently keeping an eye on the project. Thanks to my
initial production editor, Megan Dunchak. Thanks to my copyeditor, Marilyn Smith,
who, despite my best efforts at clarity and consistency, still found many things to fix.
Riley Hoffman had overall responsibility for layout and design of the book, and
also took up the reins as production editor as we came into the home straight. Riley
graciously bore with my many requests to achieve the right layout and produced a
superb final result. Thank you.

I now know the truth of the cliché that a writer’s family also pays the price of
the writer’s work. Thanks to Britta and Cecilia for their support, and for putting up
with the many hours that I had to be away from family as I finished the book.

Permissions

The Institute of Electrical and Electronics Engineers and The Open Group have kindly
given permission to quote portions of text from IEEE Std 1003.1, 2004 Edition,
Standard for Information Technology—Portable Operating System Interface (POSIX),
The Open Group Base Specifications Issue 6. The complete standard can be consulted
online at http.//www.unix.org/version3/online. himl.

Web site and source code of example programs

You can find further information about this book, including errata and source code
for the example programs, at http.//www.man7.org/tlpi.

Feedback

I welcome bug reports, suggestions for code improvements, and fixes to further
improve code portability. Book bugs and general suggestions about how the
explanations in the book can be improved are also welcome. Since changes in the
Linux programming interface are varied and sometimes too frequent for one person
to keep up with, I would be happy to receive suggestions about new and changed
features that should be covered in a future edition of this book.

Michael Timothy Kerrisk
Munich, Germany and Christchurch, New Zealand
August 2010

mth@man?7.org

Preface xli



